K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 3 2023

đề bài sai bn ơi sao góc A lại nhỏ hơn góc A

a,c: SỬa đề. gó A<góc C

Vì góc A<góc C

mà góc A+góc C=120 độ

nên góc A<góc B<góc C

=>AB>BC

b: Xét ΔBAD có BA=BD và góc ABD=60 độ

nên ΔBAD đều

a: AB=8cm

b: xét ΔABE vuông tại A và ΔDBE vuông tại D có

BE chung

BA=BD

Do đó: ΔABE=ΔDBE

5 tháng 2 2022

Cảm ơn ạ

a: BC=15cm

Xét ΔABC có AC<AB<BC

nên \(\widehat{B}< \widehat{C}< \widehat{A}\)

b: Xét ΔEAD có 

EC là đường cao

EC là đường trung tuyến

DO đó: ΔEAD cân tại E

c: Xét ΔDAB có 

C là trung điểm của AD

CE//AB

Do đó: E là trung điểm của BD

24 tháng 2 2021

a, ΔABD có BA = BD (gt) và ˆABDABD^ = ˆABCABC^ = 60o60o

⇒ ΔABD đều (đpcm)

b, ΔABD đều ⇒ AB = AD

Xét ΔAHB và ΔAHD có:

AH chung; AB = AD (cmt); HB = HD (H là trung điểm của BD)

⇒ ΔAHB = ΔAHD (c.c.c)

⇒ ˆAHBAHB^ = ˆAHDAHD^ mà 2 góc này kề bù

⇒ ˆAHBAHB^ = ˆAHDAHD^ = 90o90o

⇒ AH ⊥ BD (đpcm)

c, ΔABD đều ⇒ AB  = BD = AD = 2cm

⇒ HB = HD = 1cm

⇒ HC = BC - HB = 5 - 1 = 4cm

ΔAHB vuông tại H ⇒ AH = √AB2−HB2AB2−HB2 = √22−1222−12 = √33cm

ΔAHC vuông tại H ⇒ AC = √AH2+HC2AH2+HC2 = √3+423+42 = √1919cm

a) Xét ΔBAD có BA=BD(gt)

nên ΔBAD cân tại B(Định nghĩa tam giác cân)

Xét ΔBAD cân tại B có \(\widehat{ABD}=60^0\)(gt)

nên ΔBAD đều(Dấu hiệu nhận biết tam giác đều)

b) Ta có: ΔBAD đều(cmt)

mà AH là đường trung tuyến ứng với cạnh BD(gt)

nên AH là đường cao ứng với cạnh BD(Định lí tam giác cân)

hay AH\(\perp\)BD(Đpcm)

 

Bài 1: Cho tam giác ABC có CA = CB = 10 cm AB = 12 cm. Kẻ CI vuông góc với AB (I thuộc AB )a,chứng minh rằng IA=IBb, Tính độ dài ICc, Kẻ IH vuông với AC (H thuộc AC) kẻ IK vuông góc với BC (K thuộc BC).So sánh các độ dài IH và IKBài 2: cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm D. Trên cạnh AC lấy điểm E sao cho AD=AEa, chứng minh rằng BE=CDb, chứng minh rằng góc ABE bằng góc ACDc, Gọi K là giao điểm của...
Đọc tiếp

Bài 1: Cho tam giác ABC có CA = CB = 10 cm AB = 12 cm. Kẻ CI vuông góc với AB (I thuộc AB )

a,chứng minh rằng IA=IB

b, Tính độ dài IC

c, Kẻ IH vuông với AC (H thuộc AC) kẻ IK vuông góc với BC (K thuộc BC).So sánh các độ dài IH và IK

Bài 2: cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm D. Trên cạnh AC lấy điểm E sao cho AD=AE

a, chứng minh rằng BE=CD

b, chứng minh rằng góc ABE bằng góc ACD

c, Gọi K là giao điểm của BE và CD. Tam giác KBC là tam giác gì? Vì sao?

Bài 3: Cho tam giác ABC vuông ở C, có góc A bằng 60 độ tia phân giác của góc BAC cắt BC ở E kẻ CK vuông góc với AB (K thuộc AB) kẻ BD vuông góc với tia AE (D thuộc tia AE)chứng minh:

a, AC=AK và AE vuông góc CK

b,KB=KA

c, EB > AC

d, ba đường AC,BD,KE cùng đi qua 1 điểm

Bài 4: Cho tam giác nhọn ABC vẽ ra phía ngoài tam giác ABC các tam giác đều ABD và ACE .Gọi M là giao điểm của DC và BE Chứng minh rằng:

a, tam giác ABE=tam giác ADC

b,góc BMC=120°

Bài 5: Cho tam giác ABC vuông ở C ,có góc A bằng 60 độ tia phân giác của góc BAC cắt BC ở E,kẻ EK vuông góc với AB( K thuộc AB)kẻ BD vuông góc với AE (D thuộc AE) chứng minh

a,AK=KB

b, AD=BC

2
12 tháng 5 2019

C1 :

Hình : tự vẽ 

a )Vì CA=CB ( đề bài cho ) => tam giác ABC cân tại C

                                       mà CI vuông góc vs AB => CI là đường cao của tam giác ABC 

=> CI cũng là đường trung tuyến của tam giác ABC ( t/c tam giác cân )

=> IA=IB (đpcm)

12 tháng 5 2019

C1 : 

b) Có IA=IB ( cm phần a ) 

mà IA+IB = AB 

      IA + IA = 12 (cm)

=> IA = \(\frac{12}{2}=6\left(cm\right)\)

Xét tam giác vuông CIA có :     CI2  +   IA2  = CA2  ( Đ/l Py-ta -go )

                                                   CI2 +  62     = 102

                                                          CI2       = 102  - 6= 64

=> CI = \(\sqrt{64}=8\left(cm\right)\)

Vậy CI ( hay IC ) = 8cm

30 tháng 5 2021

a) Xét △ABC vuông tại A có :

          AB2+AC2=BC2(định lý py-ta-go)

⇒       AC2=BC2-AB2

⇒       AC2=102-62

⇒       AC2=100-36

⇒       AC2=64

⇒       AC=8

            Vậy AC=8cm

b)

Xét △ABC và △ADC có :

    AC chung

    AB=AD(gt)

    ∠BAC=∠DAC(=90)

⇒△ABC=△ADC(c-g-c)

⇒BC=DC(2 cạnh tương ứng)

Xét △BCD có BC=DC(cmt)

⇒△BCD cân tại C (định lý tam giác cân)

c)

Xét △BCD cân tại C có

K là trung điểm của BC (gt)

A là trung điểm của BD (gt)

⇒DK , AC là đường trung tuyến của △BCD

 mà DK cắt AC tại M nên M là trọng tâm của △BCD

⇒CM=2/3AC

⇒CM=2/3.8

⇒CM=16/3cm

d)

Xét △AMQ và △CMQ có

     MQ chung 

     MA=MC(gt)

     ∠AMQ=∠CMQ(=90)

⇒△AMQ=△CMQ(C-G-C)

⇒∠MAQ=∠C2(2 góc tương ứng )

     QA=QC( 2 cạnh tương ứng)

Vì △ABC=△ADC(theo b)

⇒∠C1=∠C2(2 góc tương ứng)

∠C1=∠MAQ

mà 2 góc này có vị trí SLT

⇒AQ//BC

⇒∠QAD=∠CBA( đồng vị )

mà∠CBA=∠CDA(△BDC cân tại C)

⇒∠QAD=∠QDA

⇒△ADQ cân tại Q

⇒QA=QD

mà QA=QC(cmt)

⇒DQ=CQ

⇒BQ là đường trung tuyến của△BCD 

⇒B,M,D thẳng hàng