Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét hai tam giác BDF và CDF
hai tam giác này bằng nhau ( bạn tư chứng minh - dễ)
=> góc DBF = góc DCF (1)
Xét tam giác vuông AHC có góc ACH + góc HAC = 90 độ (2)
Xét tam giác BEH vuông tại H có: góc HEB + góc HBE = 90 độ
mà góc HEB = góc AED ( đối đỉnh)
=> góc AED + góc HBE (3)
từ 1 ; 2; 3 suy ra góc CAH = góc AED (DPCM)
a) ΔABDΔABD cân tại A => BADˆ=BDAˆBAD^=BDA^ (t/c tam giác cân)
Lại có: BADˆ+DAEˆ=BACˆ=90oBAD^+DAE^=BAC^=90o
BDAˆ+ADEˆ=BDEˆ=90oBDA^+ADE^=BDE^=90o
Do đó, DAEˆ=ADEˆDAE^=ADE^
=> ΔADEΔADE cân tại E (dấu hiệu nhận biết tam giác cân)
=> AE = ED (t/c tam giác cân) (đpcm)
b) Có: AH // ED (cùng ⊥BC⊥BC)
=> HADˆ=ADEˆHAD^=ADE^ (so le trong)
= DAE (câu a)
=> AD là phân giác HACˆ(đpcm)