K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2020

ưeauủnvgbhrjekdlxmjckfỉoekskãdjcfủiedskxcjfr

5 tháng 3 2021

a.Ta có:

ˆBID=12ˆBIC=12(180o−ˆBCI−ˆIBC)=12(180o−12ˆBCA−12ˆABC)=12(180o−12(ˆBCA+ˆABC)=12(180o−12(180o−ˆBAC)=60oBID^=12BIC^=12(180o−BCI^−IBC^)=12(180o−12BCA^−12ABC^)=12(180o−12(BCA^+ABC^)=12(180o−12(180o−BAC^)=60o 

Lại có :

ˆNIB=ˆIBC+ˆICB

=1/2ˆABC+1/2ˆACB

=1/2(ˆABC+ˆACB)

=1/2(180o−ˆBAC)=60o

NIB^=IBC^+ICB^

=1/2ABC^+1/2ACB^

=1/2(ABC^+ACB^

=1/2(180o−BAC^)=60o

=>ˆNIB=ˆBID

=>ΔNIB=ΔDIB(g.c.g)

=>BN=BD(cmt)

b.Chứng minh tương tự câu a

→CD=CM

→BN+CM=BD+CD=BC→đpcm

6 tháng 2 2020

A B C E D F O

a) +) Ta có:

^BOC = 90\(^o\)\(\frac{\widehat{BAC}}{2}\)= 120\(^o\)

+) OF là phân giác của ^BOC 

=> ^BOF = ^COF = 60\(^o\)

+) Ta có: ^BOE + ^BOC = 180\(^o\)

=> ^BOE = 180\(^o\)- 120 \(^o\)= 60 \(^o\)

=> ^DOC = ^BOE = 60 \(^o\) ( đối đỉnh)

+) Xét \(\Delta\)OBF và \(\Delta\)OBE có:

^BOF = ^BOE = 60\(^o\)

OB chung 

^OBF = ^OBE ( BO là phân giác ^EBF )

=> \(\Delta\)OBF = \(\Delta\)OBE 

=> OE = OF (1)

+) Xét \(\Delta\)ODC và \(\Delta\)OFC có:

^DOC = ^FOC = 60\(^o\)

OC chung 

^DCO = ^FCO ( CO là phân giác ^DCF )

=> \(\Delta\)ODC = \(\Delta\)OFC 

=> OD = OF (2)

Từ (1); (2) => OD = OE = OF
b) Ta có: OE = OF => \(\Delta\)OEF cân và ^EOF = ^EOB + ^FOB = 60\(^o\)+60\(^o\)=120\(^o\)

=> ^OEF = ^OFE = ( 180\(^o\)-120\(^o\)) : 2 = 30 \(^o\)

Tương tự ta có thể chứng minh đc:

^OFD = ^ODF = 30\(^o\)

^OED = ^ODE = 30\(^o\)

=> ^DFE = ^DEF = ^EDF = 30\(^o\)+30\(^o\)= 60\(^o\)

=> Tam giác DEF đều 

6 tháng 2 2020

Tại sao ^BOC = 90\(^o+\frac{\widehat{BAC}}{2}\). Em nên nhớ nó bởi vì sẽ ứng dụng vào rất nhiều bài.

Xét \(\Delta\)BOC có: ^BOC + ^BCO + ^CBO = 180\(^o\)

=> ^BOC = 180\(^o\)- ( ^BCO + ^CBO ) = 180\(^o\)- ( \(\frac{1}{2}\)^BCA + \(\frac{1}{2}\)^CBA) = 180\(^o\)- \(\frac{1}{2}\)( ^BCA + ^CBA) (1)

Xét \(\Delta\)ABC có: ^BAC + ^BCA + ^ABC = 180\(^o\)=> ^BCA + ^ABC = 180\(^o\)- ^BAC (2)

Từ (1); (2) =>  ^BOC = 180\(^o\) - \(\frac{1}{2}\)( 180\(^o\) - ^BAC ) = 90\(^o\)+  \(\frac{\widehat{BAC}}{2}\)

A B C M N E I

a)Vì \(\Delta ABC\)cân , \(BM\) là phân giác của\(\widehat{B}\), \(CN\)là phân giác của \(\widehat{C}\)

\(\Rightarrow\) \(AB=AC\)  hay \(\frac{1}{2}AB=\frac{1}{2}AC\)  và   \(BM\)\(CN\) cũng là đường trung tuyến ứng vs 2 cạnh \(AB\)và \(AC\)

\(\Rightarrow AM=CM\)và \(AN=BN\)mà \(\frac{1}{2}AB=\frac{1}{2}AC\Rightarrow AM=AN=CM=BN\)

Xét \(\Delta AMN\)\(AM=AN\Rightarrow\Delta ABC\)cân \(\left(dpcm\right)\)

b)Có 

  • \(M\)là trung điểm của \(AC\)(do \(BM\)là đường trung tuyến )
  • \(N\)là trung điểm của \(AB\)(....)

\(\Rightarrow MN\)là đường trung bình của \(\Delta ABC\)

\(\Rightarrow MN//BC\left(dpcm\right)\)

17 tháng 1 2020

A B C O H N M

Số đo góc chưa chính xác :(

Gọi giao điểm của \(BM\) và \(CN\)là \(O\)

Từ \(O\)kẻ \(OH\)là phân giác \(\widehat{BOC}\)\(\left(H\in BC\right)\)

Xét \(\Delta ABC\)có:

\(\widehat{A}+\widehat{ABC}+\widehat{ACB}=180^o\) (định lí tổng ba góc \(\Delta\))

\(\Rightarrow\widehat{ABC}+\widehat{ACB}=180^o-60^o=120^o\)

Ta có:

\(\widehat{OBC}=\widehat{OBA}=\frac{\widehat{ABC}}{2}\) (\(OB\): phân giác \(\widehat{ABC}\))

\(\widehat{OCB}=\widehat{OCA}=\frac{\widehat{ACB}}{2}\) (\(OC\): phân giác \(\widehat{ACB}\))

\(\Rightarrow\widehat{OBC}+\widehat{OCB}=\frac{\widehat{ABC}+\widehat{ACB}}{2}=\frac{120^o}{2}=60^o\)

Xét \(\Delta BOC\)có:

\(\widehat{OBC}+\widehat{OCB}+\widehat{BOC}=180^o\) (định lí tổng ba góc \(\Delta\))

\(\Rightarrow\widehat{BOC}=180^o-60^o=120^o\)

Ta có:

\(\widehat{BOH}=\widehat{HOC}=\frac{\widehat{BOC}}{2}=\frac{120^o}{2}=60^o\) (\(OH\): phân giác \(\widehat{BOC}\))

Ta có:

\(\widehat{BOC}+\widehat{BON}=180^o\) (kề bù)

\(\Rightarrow\widehat{BON}=180^o-120^o=60^o\)

\(\Rightarrow\widehat{BON}=\widehat{BOH}\left(=60^o\right)\)

Ta có:

\(\widehat{BOC}+\widehat{COM}=180^o\) (kề bù)

\(\Rightarrow\widehat{COM}=180^o-120^o=60^o\)

\(\Rightarrow\widehat{COM}=\widehat{HOC}\left(=60^o\right)\)

Xét \(\Delta BON\)và \(\Delta BOH\)có:

\(\widehat{OBN}=\widehat{OBH}\) (\(OB\): phân giác \(\widehat{ABC}\))

\(OB\): chung

\(\widehat{BON}=\widehat{BOH}\) (cmt)

\(\Rightarrow\Delta BON=\Delta BOH\left(g.c.g\right)\)

\(\Rightarrow BN=BH\) (2 cạnh tương ứng)

Xét \(\Delta COM\)và \(\Delta COH\)có:

\(\widehat{COM}=\widehat{COH}\) (cmt)

\(OC\) : chung

\(\widehat{MCO}=\widehat{HCO}\) (\(OC\): phân giác \(\widehat{ACB}\))

\(\Rightarrow\Delta COM=\Delta COH\left(g.c.g\right)\)

\(\Rightarrow MC=HC\) (2 cạnh tương ứng)

Ta có:

\(BC=BH+HC\)

Mà \(\hept{\begin{cases}BN=BH\\MC=HC\end{cases}}\)

\(\Rightarrow BC=BN+MC\left(đpcm\right)\)