Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\widehat{B}=\widehat{C}=70^0\)
\(\widehat{BAM}=\widehat{CAM}=20^0\)
\(\widehat{AMB}=\widehat{AMC}=90^0\)
Do AB=AC nên tam giác ABC là tam giác cân.
Mà M là trung điểm của BC
Suy ra góc BAM=\(\frac{1}{2}\)góc BAC suy ra góc BAM=\(\frac{1}{2}\)x40=20 (độ)
Qua A vẽ đường thẳng xx' song song với BC suy ra ta có : góc BAM + góc MBA = 180 (độ)
Suy ra góc MBA=180-20=160 (độ)
Có góc MBA + góc BAM + góc AMB = 180 (độ)
Suy ra góc AMB = 180-120-20=40 (độ)
Vậy trong tam giác AMB có: góc AMB=40(độ)
góc BAM=20(độ)
góc ABM=120(độ)
Ta có AB = AC \(\Rightarrow\) tam giác ABC cân tại A
\(\Rightarrow\) góc B = góc C = (180 - góc A) : 2 = 70 độ
Tam giác ABC cân tại A có đường trung tuyến AM (M là trung điểm của BC) còn là đường cao
nên góc AMB = góc AMC = 90 độ
\(\left\{{}\begin{matrix}AB=AC\\BM=MC\\AM.chung\end{matrix}\right.\Rightarrow\Delta AMB=\Delta AMC\left(c.c.c\right)\\ \Rightarrow\widehat{AMB}=\widehat{AMC};\widehat{B}=\widehat{C};\widehat{BAM}=\widehat{CAM}\)
Mà \(\widehat{AMB}+\widehat{AMC}=180^0\Rightarrow\widehat{AMB}=\widehat{AMC}=90^0\)
Xét \(\Delta ABC:\widehat{A}+\widehat{B}+\widehat{C}=180^0\)
\(\Rightarrow2\widehat{B}=180^0-\widehat{A}=100^0\\ \Rightarrow\widehat{B}=\widehat{C}=50^0\)
Lại có \(\widehat{BAM}=\widehat{CAM}\Rightarrow\widehat{BAM}=\widehat{CAM}=\dfrac{1}{2}\widehat{BAC}=40^0\)