Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ ND//AB (D thuộc AB).
Có: \(MC=\dfrac{1}{2}AM;MC+AM=AC\)
\(\Rightarrow\dfrac{AM}{AC}=\dfrac{2}{3};\dfrac{MC}{AC}=\dfrac{1}{3}\).
Có: \(NC=2BN;NC+BN=BC\)
\(\Rightarrow\dfrac{NC}{BC}=\dfrac{2}{3};\dfrac{BN}{BC}=\dfrac{1}{3}\)
△ABC có: ND//AB.
\(\Rightarrow\dfrac{ND}{AB}=\dfrac{DC}{AB}=\dfrac{2}{3}\) (định lí Ta-let)
\(\Rightarrow ND=\dfrac{2}{3}AB=\dfrac{2}{3}.6=4\left(cm\right)\).
\(\dfrac{AD}{AC}=\dfrac{BN}{BC}=\dfrac{1}{3}=\dfrac{MC}{AC}\Rightarrow AD=MC=\dfrac{1}{3}AC\)
Mà \(AD+DM+MC=AC\Rightarrow AD=DM=MC=\dfrac{1}{3}AC\); \(AM=DC=\dfrac{2}{3}AC\).
\(\Rightarrow\dfrac{MD}{AM}=\dfrac{1}{2}\)
△APM có: DN//AP.
\(\Rightarrow\dfrac{ND}{AP}=\dfrac{MD}{AM}=\dfrac{1}{2}\) (hệ quả định lí Ta-let)
\(\Rightarrow AP=2ND=2.4=8\left(cm\right)\)
Nối B với D,C với K
Xét \(\Delta KAD\) và \(\Delta KAC\) có chung chiều cao xuất phát từ K , đáy AD = \(\frac{1}{3}\) Đáy AC
Nên \(S_{KAD}\) = \(\frac{1}{3}.S_{KAC}\)
Xét \(\Delta BAD\) và \(\Delta BAC\) có chung chiều cao xuất phát từ B , đáy AD = \(\frac{1}{3}\)
Nên \(S_{BAD}=\frac{1}{3}.S_{BAC}\)
Do đó : \(S_{KAD}+S_{BAD}=\frac{1}{3}.S_{KAC}+\frac{1}{3}.S_{BAC}\)
Mà : \(S_{KBC}=S_{KAC}+S_{BAC}\) nên \(\frac{1}{3}.S_{KBC}=\frac{1}{3}.S_{KBC}=\frac{1}{3}.S_{KAC}+\frac{1}{3}.S_{BAC}\)
Nên : \(S_{KBD}=\frac{1}{3}.S_{KBC}\)
Ta có : \(S_{KBC}=2.S_{KBE}\)
Nên : \(S_{KBD}=\frac{2}{3}.S_{KBE}\)
Nên : \(S_{EBD}=\frac{1}{3}.S_{KBE}\)
Mà : \(S_{EBD}=\frac{1}{2}.S_{BDC}=\frac{1}{2}.\left(\frac{2}{3}.S_{ABC}\right)=\frac{1}{3}.180=60\)
Vậy : \(S_{KBE}=3.S_{EBD}=180\)
\(S_{ABED}=S_{ABC}-S_{DEC}=180-60=120\)
Vậy : \(S_{AKD}=S_{KBE}-S_{ABED}=180-120=60cm^2\)