K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2019

haizzz!câu hình của đề trường tớ:3

A B C M E D H K P / / // // /// /// O O X X G Q I

CÂU d kẻ điểm phụ +)Trên tia đối của HM lấy điểm P sao cho HM=HP

Gọi giao điểm của EB với AC là G,với DC là Q

P/S:gần đi hok rồi.tối về làm nốt cho:3

14 tháng 4 2019

câu c

Ta có:\(\widehat{EAD}=\widehat{EAC}+\widehat{CAD}=90^0+\widehat{CAD}=90^0+90^0-\widehat{BAC}=180^0-\widehat{BAC}\)

Mặt khác \(\widehat{BAC}+\widehat{ACI}=180^0\Rightarrow\widehat{ACI}=180^0-\widehat{BAC}\)

\(\Rightarrow\widehat{ACI}=\widehat{EAD}\)

Xét \(\Delta AIC\&\Delta AED:\hept{\begin{cases}CI=AD\\\widehat{ACI}=\widehat{AED}\\AC=AE\end{cases}\Rightarrow\Delta AIC=\Delta AED\left(c.g.c\right)}\)

\(\Rightarrow\widehat{AED}=\widehat{CAI}\)

Ta có:\(\widehat{CAI}+\widehat{EAI}=90^0\Rightarrow\widehat{AED}+\widehat{EAI}=90^0\RightarrowĐPCM\)

2 tháng 4 2019

Chỉ vô tình vào chém thôi

CM: BE vuông góc DC. dễ chứng minh bằng cặp tam giác bằng nhau

Có MH là đg tb tam giác BCE thì MH//BE và MH=1/2BE

MK là đg trung bình tam giác BDC thì MK//DC và MK=1/2CD

Do đó MK=MH do BE=DC

Và MK vuông góc MH

17 tháng 4 2018

đây là bài thi HSG toán năm 2017-2018 của Vinh mà

23 tháng 4 2018

Mk cũng đang đau đầu lên với câu này bạn ạ!!!

Bài 1: 

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

AB=AC

\(\widehat{BAD}\) chung

Do đó: ΔABD=ΔACE

b: Ta có: ΔABD=ΔACE

nên AD=AE

Ta có: AE+EB=AB

AD+DC=AC

mà AB=AC
và AD=AE

nên EB=DC

Xét ΔEBO vuông tại E và ΔDCO vuông tại D có

EB=DC

\(\widehat{EBO}=\widehat{DCO}\)

Do đó: ΔEBO=ΔDCO

c: Xét ΔABO và ΔACO có

AB=AC

BO=CO

AO chung

DO đó:ΔABO=ΔACO

Suy ra: \(\widehat{BAO}=\widehat{CAO}\)

hay AO là tia phân giác của góc BAC

1. Cho tam giác ABC vuông cân tại A. M là trung điểm của BC. Lấy điểm D bất kì thuộc BC.(D khác B , C , M). Gọi H và I là thứ tự chân đường vuông góc kẻ từ B , C xuống đường thảng AD. Đường thẳng AM cắt CI tại N. CMR :a) BH song song CIb) BH = AIc) Tam giác HMI vuông cân2.Cho tam giác ABC có AB = AC = BC. M là trung điểm của BCa) CM : Tam giác AMB = Tam giác AMCb) Trên tia đối của tia MA lấy điểm N sao cho M là...
Đọc tiếp

1. Cho tam giác ABC vuông cân tại A. M là trung điểm của BC. Lấy điểm D bất kì thuộc BC.(D khác B , C , M). Gọi H và I là thứ tự chân đường vuông góc kẻ từ B , C xuống đường thảng AD. Đường thẳng AM cắt CI tại N. CMR :

a) BH song song CI

b) BH = AI

c) Tam giác HMI vuông cân

2.Cho tam giác ABC có AB = AC = BC. M là trung điểm của BC

a) CM : Tam giác AMB = Tam giác AMC

b) Trên tia đối của tia MA lấy điểm N sao cho M là trung điểm của AN. CM : Tam giác AMB = Tam giác NMC

c)Vẽ tia Ax vuông góc AM (AM thuộc nửa mặt phẳng bờ là đường thẳng AB chứa điểm C). Trên Ax lấy điểm P sao cho AP = AC. CM : P , N , C thẳng hàng.

3. Cho tam giác ABC vuông tại A , BD là tia phân giác của góc B ( D thuộc AC). Trên tia BC lấy điểm E sao cho BA = BE

a) CM : DE vuông góc BE

b) CM : BE là đường trung trực của AE.

c) Kẻ AH vuông góc BC. So sánh AH và EC

GIÚP MK VS NHA MN. BÀI HÌNH HỌC NÊN NHỜ MN VẼ HỘ MK CÁI HÌNH LUÔN NHA. mƠN MN NHÌU !!!!

2
7 tháng 8 2020

KHÔNG THẤY HÌNH THÌ VÀO THỐNG KÊ HỎI ĐÁP NHA

A) VÌ \(BH\perp AD\Rightarrow\widehat{BHA}=90^o\)

         \(CI\perp AD\Rightarrow\widehat{CID}=90^o\)

\(\Rightarrow\widehat{BHA}=\widehat{CID}=90^o\)hay \(\widehat{BHI}=\widehat{CIH}=90^o\)

HAI GÓC NÀY Ở VỊ TRÍ SO LE TRONG BẰNG NHAU 

=> BH // CI (ĐPCM)

B) 

XÉT \(\Delta ABC\)VUÔNG TẠI A 

\(\Rightarrow\widehat{A}=90^o\)hay \(\widehat{BAH}+\widehat{HAC}=90^o\left(1\right)\)

XÉT \(\Delta AHB\)VUÔNG TẠI H

\(\Rightarrow\widehat{H}=90^o\)hay \(\widehat{BAH}+\widehat{ABH}=180^o-90^o=90^o\left(2\right)\)

từ (1) và (2) \(\Rightarrow\widehat{HAC}=\widehat{ABH}\)

XÉT \(\Delta ABH\)\(\Delta CAI\)

\(\widehat{H}=\widehat{I}=90^o\)

AB = AC (gt)

\(\widehat{ABH}=\widehat{IAC}\)(CMT)

=>\(\Delta ABH\)=\(\Delta CAI\)(C-G-C)

=> BH = AI ( HAI CẠNH TƯƠNG ỨNG )

7 tháng 8 2020

Ai giúp mk vs ạ