K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài làm

a) Xét tam ABC vuông tại A có:

\(\widehat{ACB}+\widehat{ABC}=90^0\)( hai góc phụ nhau )

hay \(\widehat{ACB}+60^0=90^0\)

=> \(\widehat{ACB}=90^0-60^0=30^0\)

b) Xét tam giác ABE và tam giác DBE có:

\(\widehat{BAE}=\widehat{BDE}=90^0\)

Cạnh huyền: BE chung

Cạnh góc vuông: AB = BD ( gt )

=> Tam giác ABE = tam giác DBE ( cạnh huyền - cạnh góc vuông )

=> \(\widehat{ABE}=\widehat{DBE}\)( hai góc tương ứng )

=> BI là tia phân giác của góc BAC

Mà I thược BE

=> BE là tia phân giác của góc BAC

Gọi I là giao điểm BE và AD

Xét tam giác AIB và tam giác DIB có:

AB = BD ( gt )

\(\widehat{ABE}=\widehat{DBE}\)( cmt )

BI chung

=> Tam giác AIB = tam giác DIB ( c.g.c )

=> AI = ID                                                                 (1) 

=> \(\widehat{BIA}=\widehat{BID}\)

Ta có: \(\widehat{BIA}+\widehat{BID}=180^0\)( hai góc kề bù )

Hay \(\widehat{BIA}=\widehat{BID}=\frac{180^0}{2}=90^0\)

=> BI vuông góc với AD tại I                                                       (2) 

Từ (1) và (2) => BI là đường trung trực của đoạn AD

Mà I thược BE

=> BE là đường trung trực của đoạn AD ( đpcm )

c) Vì tam giác ABE = tam giác DBE ( cmt )

=> AE = ED ( hai cạnh tương ứng )

Xét tam giác AEF và tam giác DEC có:

\(\widehat{EAF}=\widehat{EDC}=90^0\)

AE = ED ( cmt )

\(\widehat{AEF}=\widehat{DEF}\)( hai góc đối )

=> Tam giác AEF = tam giác DEC ( g.c.g )

=> AF = DC 

Ta có: AF + AB = BF

          DC + BD = BC

Mà AF = DC ( cmt )

AB = BD ( gt )

=> BF = BC 

=> Tam giác BFC cân tại B

=> \(\widehat{BFC}=\widehat{BCF}=\frac{180^0-\widehat{FBC}}{2}\)                                                          (3) 

Vì tam giác BAD cân tại B ( cmt )

=> \(\widehat{BAD}=\widehat{BDA}=\frac{180^0-\widehat{FBC}}{2}\)                                               (4)

Từ (3) và (4) => \(\widehat{BAD}=\widehat{BFC}\)

Mà Hai góc này ở vị trí đồng vị

=> AD // FC

d) Xét tam giác ABC vuông tại A có:

\(\widehat{ACB}+\widehat{ABC}=90^0\)( hai góc phụ nhau )                              (5)

Xét tam giác DEC vuông tại D có:

\(\widehat{DEC}+\widehat{ACB}=90^0\)( hai góc phụ nhau )                                (6)

Từ (5) và (6) => \(\widehat{ABC}=\widehat{DEC}\)

Ta lại có:

\(\widehat{ABC}>\widehat{EBC}\)

=> AC > EC

Mà \(\widehat{EBC}=\frac{1}{2}\widehat{ABC}\)

=> EC = 1/2 AC. 

=> E là trung điểm AC

Mà EC = EF ( do tam giác AEF = tam giác EDC )

=> EF = 1/2AC 

=> AE = EC = EF 

Và AE = ED ( cmt )

=> ED = EC

Mà EC = 1/2AC ( cmt )

=> ED = 1/2AC

=> 2ED = AC ( đpcm )

Mình chứng minh ra kiểu này cơ. không biết đề đúng hay sai!?? 

28 tháng 3 2020

Giải:
a) Xét ΔABD và ΔEBD có :

AB=BE(gt)

B1ˆ=B2ˆ(=12Bˆ)

BD: cạnh chung

⇒ΔABD=ΔEBD(c−g−c)

⇒DA=DE ( cạnh tương ứng )

Vậy DA=DE

b) Vì ΔABD=ΔEBD

⇒ góc A= góc BED

Mà  góc A=900⇒ góc BED=900

Vậy góc BED =900

c) VÌ ΔABD=ΔEBD ( cmt)

=> góc ABD = góc EBD( 2 góc tương ứng)

Xét \(\Delta ABIv\text{à}\Delta EBI\)có:

  AB = EB

góc ABD = góc EBD

BI cạnh chung 

=>\(\Delta ABI=\text{ }\Delta EBI\)

=> góc AIB = góc EIB và IA = IE          (1)

Mà góc AIB + góc EIB =180 0

=> \(\hept{\begin{cases}g\text{ócAIB=90^0}\\g\text{óc EIB=90^0}\end{cases}}\)(2)

Từ (1),(2) => BI là đường trung trực của AE

Mà I \(\in\)BD

=> BD là đường trung trực của AE

Vậy BD là đường trung trực của AE

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:a) BD là đường trung trực của AE.b) AD<DCc) Ba điểm E, D, F thẳng hàngBài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.a) Tính BCb) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCBc) Trên tia đối của tia DB lấy điểm E sao cho...
Đọc tiếp

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:

a) BD là đường trung trực của AE.

b) AD<DC

c) Ba điểm E, D, F thẳng hàng

Bài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.

a) Tính BC

b) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCB

c) Trên tia đối của tia DB lấy điểm E sao cho DE=DC. Chứng minh tam giác BCE vuông

d)Chứng minh:DF là phân giác của góc ADE và BE vuông góc CF

Bải 3: Cho tam giác đều ABC. Tia phân giác góc B cắt cạnh AC ở M. Từ A kẻ đường thẳng vuông góc với AB cắt các tia BM, BC lần lượt ở M và E. Chứng minh:

a) Tam giác ANC là tam giác cân

b) NC vuông góc BC

c) Tam giác AEC là tam giác cân

d) So sánh BC và NE

Bài 4: Cho tam giác nhọn ABC, kẻ BM vuông góc AC, CN vuông góc AB. Trên tia đối của tia BM lấy điểm D sao cho BD=AC, trên tia đối của tia CN lấy điểm E sao cho CE=AB. Chứng minh:

a) Góc ACE= góc ABD

b) Tam giác ABD = tam giác ECA

c) Tam giác AED là tam giác vuông cân

0

a: Xét ΔBAD và ΔBED có 

BA=BE

\(\widehat{ABD}=\widehat{EBD}\)

BD chung

Do đó: ΔBAD=ΔBED

Suy ra: DA=DE

b: Ta có: ΔBAD=ΔBED

nên \(\widehat{BAD}=\widehat{BED}=90^0\)

c: Xét ΔADF vuông tại A và ΔEDC vuông tại E có 

AD=ED

AF=EC

Do đó: ΔADF=ΔEDC

Suy ra: \(\widehat{ADF}=\widehat{EDC}\)

=>\(\widehat{ADF}+\widehat{ADE}=180^0\)

=>E,F,D thẳng hàng

27 tháng 11 2016

B C D A E F

a) Xét ΔADB và ΔEDB có:

BA = BE ( giả thiết )

Góc ABD = EBD ( BD là tia phân giác của góc ABE )

BD cạnh chung.

=> ΔADB = ΔEDB ( c.g.c )

=> DA = DE ( 2 cạnh tương ứng )

b) Vì ΔADB = ΔEDB nên góc DAB = DEB = 90 độ ( 2 góc tương ứng).

27 tháng 11 2016

Mk vẽ hình ko đc đẹp cho lắm, thông cảm nha!

10 tháng 12 2021

a) Xét tam giác ABD và tam giác EBD có:

+ ^ABD = ^EBD (do BD là phân giác ^B).

+ BD chung.

+ AB = BE (gt).

=> Tam giác ABD = Tam giác EBD (c - g - c).

=> DA = DE (2 cạnh tương ứng).

b) Tam giác ABD = Tam giác EBD (cmt).

=> ^BAD = ^BED (2 góc tương ứng).

Mà ^BAD = 90o (gt).

=> ^BED = 90o.

12 tháng 3 2022

a) Xét \(\Delta ABD\) và \(\Delta EBD:\)

BD chung.

\(\widehat{ABD}=\widehat{EBD}\) (BD là phân giác \(\widehat{B}).\)

\(\Rightarrow\Delta ABD=\Delta EBD\) (cạnh huyền - góc nhọn).

\(\Rightarrow\widehat{BAD}=\widehat{BED}\) (2 góc tương ứng).

Mà \(\widehat{BAD}=90^o\left(\widehat{BAC}=90^o\right).\)

\(\Rightarrow\widehat{BED}=90^o.\)

\(b)\Delta ABD=\Delta EBD\left(cmt\right).\\ \Rightarrow AB=EB.\)

Xét \(\Delta ABE:\)

\(AB=EB\left(cmt\right).\)

\(\Rightarrow\Delta ABE\) cân tại B (Tính chất tam giác cân).

Xét \(\Delta ABE\) cân tại B:

BD là phân giác \(\widehat{B}\left(gt\right).\)

\(\Rightarrow\) BD là trung trực của AE (Tính chất các đường trong tam giác cân).

12 tháng 3 2022

đen thui zị