K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2016

A B C E D

a)Xét ΔBEC và ΔCDB có:

\(\widehat{BEC}=\widehat{CDB}=90^o\) (gt)

BC: cạnh chung

\(\widehat{B}=\widehat{C}\) ( vì ΔABC có AB=AC=> ΔABC cân tại A)

=> ΔBEC =ΔCDB( cạnh huyền- góc nhọn)

=> BD=CE

b)Vì ΔBEC=ΔCDB 9cmt)

=> BE=CD

Có : AB=AE+BE

AC=AD+DC

Mà AB=AC(gt) ; BE=CD(cmt)

=>AE=AD

Xét ΔAOE và ΔAOD có:

AE=AD(cmt)

\(\widehat{AEO}=\widehat{ADO}=90^o\left(gt\right)\)

OA: cạnh chung

=> ΔAOE=ΔAOD (cạnh huyenf - cạnh góc vuông)

=> OE=OD

c) Vì ΔBEC=ΔCDB (cmt)

=> \(\widehat{BCE}=\widehat{CBD}\)

=> ΔOBC cân tại O

=> OB=OC

d)Vì ΔAOE=ΔAOD(cmt)

=> \(\widehat{OAE}=\widehat{OAD}\)

=> AO là tia pg của goac BAC

11 tháng 12 2016

Ta có hình vẽ sau:

 

1 2 B A C E D O 1 2

a) Xét ΔABD và ΔACE có:

\(\widehat{A}\) : Chung

AB = AC (gt)

\(\widehat{ADB}=\widehat{AEC}=90^o\) (gt)

=> ΔABD = ΔACE (g.c.g)

=> BD = CE (2 cạnh tương ứng) (đpcm)

b) Vì ΔABD = ΔACE (ý a)

=> AD = AE(2 cạnh tương ứng)

mà AB = AC (gt)

=> EB = ED

\(\widehat{EBD}=\widehat{DCE}\) (2 góc tương ứng)

Xét ΔOEB và ΔODC có:

\(\widehat{OEB}=\widehat{ODC}=90^o\) (gt)

EB = ED (cm trên)

\(\widehat{EBD}=\widehat{DCE}\) (cm trên)

=> ΔOEB = ΔODC (g.c.g)

=> OE = OD(2 cạnh tương ứng) (đpcm)

c) Vì ΔOEB = ΔODC (ý b)

=> OB = OC (2 cạnh tương ứng) (đpcm)

d) Vì ΔABD = ΔACE (ý a)

=> AD = AE(cạnh tương ứng)

Xét ΔAOE và ΔAOD có:

OE = OD (ý b)

\(\widehat{AEO}=\widehat{ADO}=90^o\) (gt)

AD = AE (cm trên)

=> ΔAOE = ΔAOD (c.g.c)

=> \(\widehat{A_1}=\widehat{A_2}\) (2 góc tương ứng)

=> AO là tia phân giác của \(\widehat{BAC}\) (đpcm)

 

 

 

30 tháng 12 2021

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

AB=AC

\(\widehat{A}\) chung

Do đó: ΔABD=ΔACE

Suy ra: BD=CE

9 tháng 10 2019

A B C E D

Xét \(\Delta BEC\) và \(\Delta CDB\) có :

\(\widehat{BEC}=\widehat{CDB}=90^o\left(gt\right)\)

BC : cạnh chung 

\(\widehat{B}=\widehat{C}\) ( vì \(\Delta ABC\) có AB = AC \(\Rightarrow\) \(\Delta ABC\) cân tại A )

\(\Rightarrow\Delta BEC=\Delta CDB\)(cạnh huyền - góc nhọn )

\(\Rightarrow BD=CE\)

b ) Vì \(\Delta BEC=\Delta CDB\left(cmt\right)\)

\(\Rightarrow BE=CD\)

Có : \(AB=AE+BE\)

\(AC=AD+DC\) 

Mà AB = AC (gt) ; BE = CD (cmt)
\(\Rightarrow AE=AD\)

Xét \(\Delta AOE\) và \(\Delta AOD\) có :
\(AE=AD\left(cmt\right)\)

  \(\widehat{AEO}=\widehat{ADO}=90^o\left(gt\right)\)

OA : cạnh chung 

\(\Rightarrow\Delta AOE=\Delta AOD\) ( cạnh huyền - cạnh góc vuông )

\(\Rightarrow OE==OD\)

c ) Vì \(\Delta BEC=\Delta CDB\) (cmt)

\(\Rightarrow\widehat{BCE}=\widehat{CBD}\)

\(\Rightarrow\Delta AOB\) cân tại O

\(\Rightarrow OB=OC\)

d ) Vì \(\Delta AOE=\Delta AOD\left(cmt\right)\)

\(\Rightarrow\widehat{OAE}=\widehat{OAD}\)

\(\Rightarrow AO\) là tia phân giác của góc BAC

Chúc bạn học tốt !!!

30 tháng 8 2016

A B C E D O xét Δ ABC có AB=AC(gt)

=> ΔABC cân tại A 

Xét tam giác vuông BDC và tam giác vuông CEB có

BC cạnh chung

góc BCD = góc CBE ( Δ ABC cân cmt)

=> Δ BDC= ΔCEB ( chgn)

=> BD=CE (cctư)

b) ta có Δ BDC= ΔCEB (cmt)

=> EB=DC (cctư)

mặt khác ta có

góc DOC + góc OCD =90o (1)

góc EOB + góc OBE = 90(2)

mà góc DOC = góc EOB (đđ) (3)

(1),(2)&(3) => góc DCO = góc EBO

Xét Δ vuông OEB  và Δ vuông ODC có

EB=DC(cmt)

góc DCO = góc EBO

=> Δ OEB = Δ ODC ( cgvgnk)

C) Xét tam giác ABC có

BD cắt CE tại O

mà BD là đường cao 

CE là đường cao

=> O là trực tâm của Δ ABC

=> AO là đường cao của Δ ABC từ góc A tới cạnh BC

Xét tam giác cân ABC có

AO là đường cao 

=> cũng vừa là đường phân giác góc BCA (tính chất tam giác cân)

ĐPCM

 

 

 

19 tháng 11 2016

chgn là gì bạn

 

24 tháng 12 2016

a) t/g ABC cân tại A

=> ABC = ACB ( tính chất tam giác cân)

Xét t/g DCB vuông tại D và tam giác EBC vuông tại E có:

BC là cạnh chung

DCB = EBC (cmt)

Do đó, t/g DCB = t/g EBC ( cạnh huyền - góc nhọn)

=> BD = CE (2 cạnh tương ứng) (đpcm)

b) t/g DCB = t/g EBC (câu a)

=> CD = BE (2 cạnh tương ứng)

DBC = ECB (2 góc tương ứng)

Mà ABC = ACB (câu a)

=> ABC - DBC = ACB - ECB

=> ABD = ACE

Xét t/g EBO vuông tại E và t/g DCO vuông tại D có:

BE = CD (cmt)

EBO = DCO (cmt)

Do đó, t/g EBO = t/g DCO ( cạnh góc vuông và góc nhọn kề)

=> OB = OC (2 cạnh tương ứng) (1)

OE = OD (2 cạnh tương ứng) (2)

Từ (1) và (2) => đpcm

c) Dễ thấy, t/g AOC = t/g AOB (c.c.c)

=> OAC = OAB (2 góc tương ứng)

=> AO là phân giác CAB (đpcm)

24 tháng 12 2016

A B C E D O

a) Xét ΔABD vuông tại D và ΔACE vuông tại E có:

AB = AC (gt)

Góc A chung

=> ΔABD = ΔACE ( cạnh huyền - góc nhọn )

=> BD = CE ( 2 cạnh tương ứng )

b) Vì ΔABD = ΔACE nên góc ABD = ACE ( 2 góc tương ứng ) và AD = AE ( 2 cạnh tương ứng )

Ta có: AD + DC = AC

AE + EB = AB

mà AD = AE (cm trên); AC = AB (gt)

=> DC = EB

Xét ΔEOB và ΔDOC có:

góc ABD = ACE (cm trên)

EB = DC (cm trên)

góc OEB = ODC (= 90)

=> ΔEOB = ΔDOC (g.c.g)

=> OE = OD ( 2 cạnh tương ứng ) ; OB = OC ( 2 cạnh tương ứng )

c) Do ΔEOB = ΔĐỌC nên EO = DO ( 2 cạnh tương ứng )

Xét ΔAOE vuông tại E và ΔAOD vuông tại D có:

OE = DO ( cm trên )

AE = AD (câu b)

=> ΔAOE = ΔAOD ( cạnh góc vuông )

=> góc OAE = OAD ( 2 góc tương ứng )

Do đó AO là tia phân giác của góc EAD hay AO là tia pg của góc BAC.

Chúc học tốt Cathy Trang

 

24 tháng 3 2020

A) \(\Delta ABC\)CÂN TẠI A

\(\Rightarrow\hept{\begin{cases}AB=AC\\\widehat{B}=\widehat{C}\end{cases}}\)

XÉT \(\Delta BDA\)VUÔNG TẠI D VÀ\(\Delta CEA\)VUÔNG TẠI E CÓ

       \(BA=CA\left(GT\right)\)

  \(\widehat{A}\)LÀ GÓC CHUNG

=>\(\Delta BDA\)=\(\Delta CEA\)( CẠNH HUYỀN - GÓC VUÔNG )

=> BD = CE HAI CẠNH TƯƠNG ỨNG ( ĐPCM )

B)  VÌ \(\Delta BDA\)=\(\Delta CEA\)(CMT)

=> DA = EA ( HAI CẠNH TƯƠNG ỨNG ); \(\widehat{ABD}=\widehat{ACE}\)HAY \(\widehat{EBO}=\widehat{DCO}\)( HAI GÓC TƯƠNG ỨNG ) 

MÀ \(BE+EA=AB\)

    \(CD+DA=AC\)

MÀ AB = AC (CMT);  DA = EA (CMT)

=> BE = CD

XÉT \(\Delta OEB\)\(\Delta ODC\)

\(\widehat{BEO}=\widehat{CDO}=90^o\)

\(EB=DC\left(CMT\right)\)

 \(\widehat{EBO}=\widehat{DCO}\)

=>\(\Delta OEB\)=\(\Delta ODC\)(G-C-G)

24 tháng 3 2020

C) VÌ  \(\Delta OEB=\Delta ODC\left(CMT\right)\)

=> OE = OD

XÉT \(\Delta AEO\)\(\Delta ADO\)

\(AE=AD\left(CMT\right)\)

\(\widehat{AEO}=\widehat{ADO}=90^o\)

OE = OD (CMT)

=>\(\Delta AEO\)=\(\Delta ADO\)(C-G-C)

=> \(\widehat{EAO}=\widehat{DAO}\)HAI GÓC TƯƠNG ỨNG

MÀ AO ẰM GIỮA AE VÀ AD

=> AO LÀ PHÂN GIÁC CỦA \(\widehat{EAD}\)

HAY  AO LÀ PHÂN GIÁC CỦA \(\widehat{BAC}\)