Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.Tam giác AMD có AB vừa là đường trung tuyến vừa là đường cao
=> Tam giác AMD cân tại A
=> AB cũng đồng thời là đường phân giác của tam giác AMD
=> góc MAB = góc BAD
Tương tự ta CM được AC là đường trung tuyến của tam giác AME
=> góc CAM = góc CAE
=> \(\widehat{DAE}=\widehat{MAB}+\widehat{BAD}+\widehat{CAM}+\widehat{CAE}\)\(=2\widehat{BAC}=140\sigma\)
b.Tam giác IMD có IB vừa là đường cao vừa là đường trung tuyến
=> IB là đường phân giác của góc DIM
=> IB là đường phân giác ngoài của tam giác IMK
Tương tự ta có : IC là đường phân giác của góc MKE
=> IC là đường phân giác ngoài của tam giác IMK
Tam giác IMK có 2 đường phân giác ngoài kẻ từ I và K cắt nhau tại A
=> MA là đường phân giác trong của tam giác IMK
=> MA là đường phân giác của góc IMK
c.Tam giác ADM cân tại A => AD=AM
Tam giác AEM cân tại A => AE=AM
=> AD=AE => tam giác ADE cân tại A
Tam giác ADE cân tại A có góc ở đỉnh DAE ko đổi ( = 2* góc ABC )
=> Cạnh đáy DE có đọ dài nhỏ nhất khi cạnh bên AD có độ dài nhỏ nhất
=> AM có độ dài nhỏ nhất
=> AM là đường cao của tam giác ABC
=> M là chân đường cao kẻ từ A xuống BC
â, Vì D đối xứng với M qua AB ⇒ AD=AM ⇒ ΔADM cân tại A ⇒ ∠A1= ∠A2=1/2 ∠DAM ⇒ ∠DAM=2 ∠A2
Vì E đối xứng với M qua AC ⇒ AE=ÂM ⇒ ΔAEM cân tại A ⇒ ∠A3= ∠A4=1/2 ∠AEM ⇒ ∠AEM=2 ∠A3
⇒ ∠DAE= ∠DAM+ ∠MAE
=2 lần góc A2+ 2 lần góc A3
=2(góc A2+A3)
= 2 lần góc BAC
= 2.70=140
Xét ΔDAE có AD=AE(=ÂM) ⇒ ΔDAE cân tại A
⇒ ∠ADE= ∠AED=180- ∠DAE/2=180-140/2=40/2=20
b, Xét ΔADI và ΔAMI có:
AD=AM(cmt)
∠A1= ∠A2
ẠI chúng
⇒ΔADI = ΔAMI(c.g.c)
⇒ ∠ADI= ∠AMI( 2 góc t/u) (1)
Xét ΔAMK và ΔAEK có:
ÂM=AE(cmt)
∠A3= ∠A4
AK chúng
⇒ΔAMK = ΔAEK(c.g.c)
⇒ ∠AMK= ∠AEK( 2 góc t/u) (2)
mà góc ADE= AED (3)
Từ (1),(2),(3) ⇒ ∠AMI= ∠AMK ⇒AM là tia phân giác ∠IMK
c, Để DE ngắn nhất ⇔ ΔADE cân tại A có AD=AE ngắn nhất
má AD=AE=AM(cmt) ⇔AM ngắn nhất
Kẻ AH vuông góc BC ⇒ ΔAHM vuông tại H ⇒AH ≤AM
AM ngắn nhất ⇔AM=AH ⇔ ∠M= ∠H
Bạn xem lời giải ở đường link sau nhé
Câu hỏi của Nguyễn Thị Thùy - Toán lớp 8 - Học toán với OnlineMath