Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
\(\widehat{ABC}+\widehat{ACB}=180^o-\widehat{A}=180^o-60^o=120^0\)
\(\widehat{EBI}=\widehat{KBI}=\frac{\widehat{ABC}}{2};\widehat{DCI}=\widehat{KCI}=\frac{\widehat{ACB}}{2}\)
\(\Rightarrow\widehat{KBI}+\widehat{KCI}=\frac{\widehat{ABC}}{2}+\frac{\widehat{ACB}}{2}=\frac{\widehat{ABC}+\widehat{ACB}}{2}=\frac{120^o}{2}=60^o\)
Xét tg BIC có
\(\widehat{BIC}=180^o-\left(\widehat{KBI}+\widehat{KCI}\right)=180^o-60^o=120^o\)
\(\Rightarrow\widehat{BIE}=\widehat{CID}=60^o\) (Cùng bù với góc \(\widehat{BIC}\) )
Xét tg BIE và tg BIK có
\(\widehat{EBI}=\widehat{KBI}\)
BE=BK; BI chung
\(\Rightarrow\Delta BIE=\Delta BIK\left(c.g.c\right)\Rightarrow\widehat{BIE}=\widehat{BIK}=60^o\)
\(\Rightarrow\widehat{CIK}=\widehat{BIC}-\widehat{BIK}=120^o-60^o=60^o\)
Xét tg CIK và tg CID có
\(\widehat{DCI}=\widehat{KCI};\widehat{CID}=\widehat{CIK}=60^o\)
CI chung
\(\Rightarrow\Delta CIK=\Delta CID\left(g.c.g\right)\Rightarrow CD=CK\)
Vậy BE=BK và CD=CK nên BE+CD=BK+CK=BC (dpcm)
A, Nối I vs K
Xét tg BEI và BKI có
Góc EBD = IBK(do bd là p/g)
BI chung
BE=BK( gt)
=>tg BEI=BKI (cgc)
=>IK=IE
a,nối IK
Xét tam giác IBE và tam giác IBK có :
IB chung
góc B1= góc B2 ( BD là phân giác )
BE=BK (gt)
suy ra tam giác IBE = tam giác IBK ( c-g-c )
suy ra IE=IK (2 cạnh tương ứng )
a: Xét ΔABE và ΔACD có
AB=AC
\(\widehat{BAE}\) cung
AE=AD
Do đó: ΔABE=ΔACD
Suy ra: BE=CD
b: Xét ΔDBC và ΔECB có
DB=EC
DC=EB
BC chung
Do đó: ΔDBC=ΔECB
Xét ΔHDB và ΔHEC có
\(\widehat{HDB}=\widehat{HEC}\)
DB=EC
\(\widehat{HBD}=\widehat{HCE}\)
Do đó:ΔHBD=ΔHCE
c: Ta có: ΔHBD=ΔHCE
nên HB=HC
Xét ΔABH và ΔACH có
AB=AC
AH chung
BH=CH
DO đó ΔABH=ΔAHC
Suy ra: \(\widehat{BAH}=\widehat{CAH}\)
hay AH là tia phân giác của góc BAC
d:Ta có: ΔABC cân tại A
mà AH là đường phân giác
nên AH là đường cao
e: Xét ΔABC có AD/AB=AE/AC
nên DE//BC