Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: tam giác AMB đều => góc MAB = 60o
tam giác ANC đều => góc NAC = 60o
Suy ra: góc MAN = \(\widehat{MAB}\)+\(NAC\)+\(BAC\)= 60o+60o+60o=180
<=> M,A,N thẳng hàng
b) Xét tam giác MAC và tam giác BAN, ta có:
AM=AB (tam giac BAM đều)
\(\widehat{MAC}\)= \(\widehat{BAN}\)= 120o
AC = AN ( tam giác ANC đều)
=> tam giác MAC = tam giác BAN (c-g-c)
=> BN=CM (2 cạnh tương ứng)
a) Ta có : \(\Delta\) MAB đều => góc MAB = 60 \(^0\)
\(\Delta\)ACN đều => góc CAN = 60 \(^0\)
Ta lại có :góc MAN = \(\widehat{BAC}+\widehat{MAB}+\widehat{CAN}\)=60\(^0\)+60\(^0\)+60\(^0\)
= > 3 điểm A,M,N thẳng hàng (đpcm)