K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: Cho tam giác ABC cân tại A có góc ở đáy bằng 50˚, lấy điểm K nằm trong tam giác sao cho góc KBC=10˚, góc KCB = 30˚. Tính số đo các góc tam giác ABK ?Bài 2: Trong hình vuông ABCD lấy điểm M sao cho góc MAB = 60˚, góc MCD = 15˚. Tính góc MBC ?Bài 3: Cho tam giác có góc ABC = 70˚, góc ACB = 50˚, trên cạnh AB lấy M sao cho góc MCB = 40˚, trên cạnh AC lấy điểm N sao cho góc NBC = 50˚. Hãy tính góc NMC ?Bài 4: Cho tam...
Đọc tiếp

Bài 1: Cho tam giác ABC cân tại A có góc ở đáy bằng 50˚, lấy điểm K nằm trong tam giác sao cho góc KBC=10˚, góc KCB = 30˚. Tính số đo các góc tam giác ABK ?

Bài 2: Trong hình vuông ABCD lấy điểm M sao cho góc MAB = 60˚, góc MCD = 15˚. Tính góc MBC ?

Bài 3: Cho tam giác có góc ABC = 70˚, góc ACB = 50˚, trên cạnh AB lấy M sao cho góc MCB = 40˚, trên cạnh AC lấy điểm N sao cho góc NBC = 50˚. Hãy tính góc NMC ?

Bài 4: Cho tam giác ABC cân tại A, dựng trung tuyến AM và phân giác AD, tính các góc của tam giác ABC biết BD = 2AM

Bài 5: Cho tam giác ABC có góc ABC = 45˚, góc ACB = 120˚, trên tia đối tia CB lấy điểm D sao cho CD = 2CB. Tính góc ADB ?

Bài 6: Tam giác ABC cân tại A có góc A = 20˚, các điểm M,N theo thứ tự thuộc các cạnh AB, AC sao cho góc BCM = 50˚, góc CBN = 60˚. Tính góc MNA ?

1
8 tháng 1 2016

dang tung bai di ban 

nhin thay ngai qua

31 tháng 10 2018

Áp dụng định lí Py ta go vào tam giác ABC có:

nên BC = 5cm

Ta có: nên AC // MN

Áp dụng định lí Ta let ta có:

Bài tập: Định lí Ta-lét trong tam giác | Lý thuyết và Bài tập Toán 8 có đáp án

Chọn đáp án A

30 tháng 4 2017

a,Xét tam giác ADE va tam giác ACB :

Có:AE/AB=3/9=1/3

 góc chung

AD/AC=4/12=1/3

=>tg ADE đồng dạng tg ACB(cgc)

=>AD/AC=AE/AB

b, Vì tg ADE đồng dạng tg ACB(cmt)

=> AD/AC=AE/AB=DE/CB

Mà:AD/AC=AE/AB=1/3

=>DE/CB=1/3

14 tháng 10 2017

khó hiểu..... bạn lên mạng gõ xem

2 tháng 7 2021

giúp mình bài này với 

 

a) Xét ΔABC có AB=AC(gt)

nên ΔABC cân tại A(Định nghĩa tam giác cân)

Suy ra: \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy)

hay \(\widehat{ABH}=\widehat{ACH}\)

b) Xét ΔABH và ΔACH có 

AB=AC(ΔABC cân tại A)

AH chung

BH=CH(H là trung điểm của BC)

Do đó: ΔABH=ΔACH(c-c-c)

Suy ra: \(\widehat{BAH}=\widehat{CAH}\)(hai góc tương ứng)

hay \(\widehat{MAE}=\widehat{NAE}\)

Xét ΔAME và ΔANE có 

AM=AN(gt)

\(\widehat{MAE}=\widehat{NAE}\)(cmt)

AE chung

Do đó: ΔAME=ΔANE(c-g-c)

c) Ta có: ΔAME=ΔANE(cmt)

nên \(\widehat{AEM}=\widehat{AEN}\)(hai góc tương ứng)

mà \(\widehat{AEM}+\widehat{AEN}=180^0\)(hai góc so le trong)

nên \(\widehat{AEM}=\widehat{AEN}=\dfrac{180^0}{2}=90^0\)

Suy ra: AH⊥MN tại E(1)

Ta có: ΔABH=ΔACH(cmt)

nên \(\widehat{AHB}=\widehat{AHC}\)(hai góc tương ứng)

mà \(\widehat{AHB}+\widehat{AHC}=180^0\)(hai góc kề bù)

nên \(\widehat{AHB}=\widehat{AHC}=\dfrac{180^0}{2}=90^0\)

Suy ra: AH⊥BC tại H(2)

Từ (1) và (2) suy ra MN//BC(Đpcm)