Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(sin6\alpha cot3\alpha cos6\alpha=2.sin3\alpha.cos3\alpha\dfrac{cos3\alpha}{sin3\alpha}-cos6\alpha\)
\(=2cos^23\alpha-\left(2cos^23\alpha-1\right)=1\) (Không phụ thuộc vào x).
b) \(\left[tan\left(90^o-\alpha\right)-cot\left(90^o+\alpha\right)\right]^2\)\(-\left[cot\left(180^o+\alpha\right)+cot\left(270^o+\alpha\right)\right]^2\)
\(=\left[cot\alpha+cot\left(90^o-\alpha\right)\right]^2\)\(-\left[cot\alpha+cot\left(90^o+\alpha\right)\right]^2\)
\(=\left[cot\alpha+tan\alpha\right]^2-\left[cot\alpha-tan\alpha\right]^2\)
\(=4tan\alpha cot\alpha=4\). (Không phụ thuộc vào \(\alpha\)).
\(\dfrac{sin\left(a-b\right)}{sina.sinb}+\dfrac{sin\left(b-c\right)}{sinb.sinc}+\dfrac{sin\left(c-a\right)}{sinc.sina}\)
\(=\dfrac{sina.cosb-cosa.sinb}{sina.sinb}+\dfrac{sinb.cosc-cosb.sinc}{sinb.sinc}+\dfrac{sinc.cosa-cosc.sina}{sina.sinc}\)
\(=\dfrac{cosb}{sinb}-\dfrac{cosa}{sina}+\dfrac{cosc}{sincc}-\dfrac{cosb}{sinb}+\dfrac{cosa}{sina}-\dfrac{cosc}{sincc}\)
\(=0\)
a) \(\dfrac{tan\alpha-tan\beta}{cot\beta-cot\alpha}=\dfrac{\dfrac{sin\alpha}{cos\alpha}-\dfrac{sin\beta}{cos\beta}}{\dfrac{cos\beta}{sin\beta}-\dfrac{cos\alpha}{sin\alpha}}\)
\(=\dfrac{\dfrac{sin\alpha cos\beta-cos\alpha sin\beta}{cos\alpha cos\beta}}{\dfrac{cos\beta sin\alpha-cos\alpha sin\beta}{sin\beta sin\alpha}}\)
\(=\dfrac{sin\beta sin\alpha}{cos\beta cos\alpha}=tan\alpha tan\beta\).
b) \(tan100^o+\dfrac{sin530^o}{1+sin640^o}=tan100^o+\dfrac{sin170^o}{1+sin280^o}\)
\(=-cot10^o+\dfrac{sin10^o}{1-sin80^o}\)\(=\dfrac{-cos10^o}{sin10^o}+\dfrac{sin10^o}{1-cos10^o}\)
\(=\dfrac{-cos10^o+cos^210^o+sin^210^o}{sin10^o\left(1-cos10^o\right)}\) \(=\dfrac{1-cos10^o}{sin10^o\left(1-cos10^o\right)}=\dfrac{1}{sin10^o}\) .
a, \(\dfrac{1-sin2a}{1+sin2a}\)
\(=\dfrac{sin^2a+cos^2a-2sina.cosa}{sin^2a+cos^2a+2sina.cosa}\)
\(=\dfrac{\left(sina-cosa\right)^2}{\left(sina+cosa\right)^2}\)
\(=\dfrac{2sin^2\left(a-\dfrac{\pi}{4}\right)}{2sin^2\left(a+\dfrac{\pi}{4}\right)}\)
\(=\dfrac{sin^2\left(\dfrac{\pi}{4}-a\right)}{sin^2\left(a+\dfrac{\pi}{4}\right)}\)
\(=\dfrac{cos^2\left(\dfrac{\pi}{4}+a\right)}{sin^2\left(\dfrac{\pi}{4}+a\right)}=cot\left(\dfrac{\pi}{4}+a\right)\)
b, \(\dfrac{sina+sinb.cos\left(a+b\right)}{cosa-sinb.sin\left(a+b\right)}\)
\(=\dfrac{sina+sinb.cosa.cosb-sinb.sina.sinb}{cosa-sinb.sina.cosb-sinb.cosa.sinb}\)
\(=\dfrac{sina.\left(1-sin^2b\right)+sinb.cosa.cosb}{cosa.\left(1-sin^2b\right)-sinb.sina.cosb}\)
\(=\dfrac{sina.cos^2b+sinb.cosa.cosb}{cosa.cos^2b-sinb.sina.cosb}\)
\(=\dfrac{\left(sina.cosb+sinb.cosa\right).cosb}{\left(cosa.cosb-sinb.sina\right).cosb}\)
\(=\dfrac{sin\left(a+b\right)}{cos\left(a+b\right)}=tan\left(a+b\right)\)