Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=5^2+12^2=169\)
hay BC=13cm
Ta có: ΔABC vuông tại A
nên bán kính đường tròn ngoại tiếp ΔABC là một nửa của cạnh huyền BC
hay \(R=\dfrac{BC}{2}=\dfrac{13}{2}=6.5\left(cm\right)\)
Bài 2:
Ta có: ABCD là hình thang cân
nên A,B,C,D cùng thuộc 1 đường tròn\(\left(đl\right)\)
hay bán kính đường tròn ngoại tiếp ΔABC cũng là bán kính đường tròn ngoại tiếp tứ giác ABCD
Xét ΔABC có
\(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
Suy ra: Bán kính của đường tròn ngoại tiếp tứ giác ABCD là \(R=\dfrac{BC}{2}=10\left(cm\right)\)
Đáp án là B
Xét tam giác ABC có:
A B 2 + A C 2 = 7 2 + 24 2 = 625 = B C 2
⇒ ΔABC vuông tại A
⇒ Tâm đường tròn ngoại tiếp tam giác ABC là trung điểm của cạnh huyền BC
⇒ Bán kính đường tròn ngoại tiếp là 12,5 cm
Áp dụng định lí Pytago cho tam giác vuông ABC, ta có BC=13cm => R=6,5cm
Do (O) là đường tròn ngoại tiếp ∆ABC
⇒ O là giao điểm của ba đường trung trực của ∆ABC
⇒ AO là đường trung trực của ∆ABC
⇒ AO ⊥ BC tại H
⇒ H là trung điểm BC
⇒ BH = BC : 2 = 12 : 2 = 6 (cm)
Do ∠ABD là góc nội tiếp chắn nửa đường tròn
⇒ ∠ABD = 90⁰
∆ABD vuông tại B có BH là đường cao
⇒ 1/BH² = 1/AB² + 1/BD²
⇒ 1/BD² = 1/BH² - 1/AB²
= 1/36 - 1/100
= 4/225
⇒ BD² = 225/4
⇒ BD = 15/2 = 7,5 (cm)
∆ABD vuông tại B
⇒ AD² = AB² + BD² (Pytago)
= 10² + 7,5²
= 156,25
⇒ AD = 12,5 (cm)
Để tính độ dài đoạn thẳng AD, ta cần tìm được tọa độ của điểm D trên đường tròn (O).
Gọi M là trung điểm của đoạn BC. Ta có AM là đường trung trực của BC, do đó OM vuông góc với BC và OM = MC = 6(cm).
Vì tam giác ABC cân tại A nên đường trung trực của BC cũng là đường cao của tam giác. Do đó, ta có AH là đường cao của tam giác ABC và AH = $\sqrt{AB^2 - BM^2}$ = $\sqrt{100 - 36}$ = $\sqrt{64}$ = 8(cm).
Ta có thể tính được AO bằng định lý Pythagoras trong tam giác vuông AOM:
$AO^2 = AM^2 + OM^2 = 10^2 - 6^2 + 6^2 = 100$
Vậy $AO = 10$ (cm).
Do đó, ta có thể tính được bán kính đường tròn (O) là $R = \frac{BC}{2} = 6$ (cm).
Gọi E là điểm đối xứng của A qua đường tròn (O). Ta có AE là đường đối xứng của AH qua đường tròn (O), do đó AE = AH = 8 (cm).
Ta có thể tính được độ dài đoạn thẳng DE bằng định lý Pythagoras trong tam giác vuông AOD:
$DE^2 = DO^2 + OE^2 = R^2 + AE^2 = 6^2 + 8^2 = 100$
Vậy $DE = 10$ (cm).
Ta cần tính độ dài đoạn thẳng AD. Ta có thể tính được độ dài đoạn thẳng HD bằng định lý Euclid:
$\frac{HD}{BD} = \frac{AH}{AB}$
$\Rightarrow HD = \frac{AH \cdot BD}{AB} = \frac{8 \cdot 6}{10} = \frac{24}{5}$ (cm)
Ta có thể tính được độ dài đoạn thẳng AO bằng định lý Pythagoras trong tam giác vuông AHO:
$AD^2 = AO^2 + OD^2 - 2 \cdot AO \cdot OD \cdot \cos{\angle AOD}$
Vì tam giác AOD cân tại O nên $\angle AOD = \frac{1}{2} \cdot \angle AOB$. Ta có thể tính được $\angle AOB$ bằng định lý cosin trong tam giác ABC:
$\cos{\angle AOB} = \frac{AB^2 + AC^2 - BC^2}{2 \cdot AB \cdot AC
hình bạn tự vẽ nha
gọi o là trung điểm của BC suy ra O là tâm đường tròn ngoại tiếp tam giác ABC suy ra OA=OB=OC=15 cm suy ra BC=30cm
xét tam giác AhO có góc AHO bằng 90',
OH=\(\sqrt{\left(OA^2-AH^2\right)}\) = 4,2
ta có : OB=OH+BH suy ra BH=OB-OH suy ra BH=10,8\(\)
XÉT tam giác ABC co góc BAC=90' , đường cao AH
\(AB^2=BH.BC\) = 10,8.30=324 suy ra AB=18
\(AC^2=BC^2-AB^2\) suy ra AC=\(\sqrt{\left(BC^2-AB^2\right)}\) suy ra AB=24
suy ra AB+AC=42
a: Ta có: OB=OC
AB=AC
Do đó: AO là đường trung trực của BC
=>A,O,H thẳng hàng
hay AD là đừog kính
b: Xét (O) có
ΔACD nội tiếp
AD là đường kính
Do đo: ΔACD vuông tại C
hay góc ACD=90 độ
Vì O là tâm đường tròn ngoại tiếp tam giác ABC nên O là giao điểm của ba đường trung trực trong tam giác ABC.
Kẻ AH ⊥ BC. Ta có: O ∈ AH
Trong tam giác vuông ABH, ta có:
Vì tam giác ABC đều nên AH là đường cao cũng đồng thời là trung tuyến nên:
Vậy chọn đáp án C.
Đáp án là C
Tam giác ABC có:
A B 2 + A C 2 = 12 2 + 16 2 = 400 = B C 2
⇒ ΔABC vuông tại A
⇒ Tâm đường tròn ngoại tiếp tam giác ABC là trung điểm của BC
⇒ Bán kính = 10 cm