K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2017

A B C M Q P N O G H D F E

Gọi AH là đường cao của tam giác ABC.

Gọi MNPQ là hình chữ nhật thỏa mãn điều kiện đề bài. Gọi O là tâm hình chữ nhật MNPQ.

Gọi E, F, D, G lần lượt là trung điểm của QM, PN, AH và BC. Khi đó O là trung điểm EF.

Gọi F' là giao điểm của PN và CD. Áp dụng định lý Talet ta có:

\(\frac{PF'}{AD}=\frac{FC}{CD}=\frac{F'N}{DH}\) mà AD = DH nên PF' = F'N hay F' là trung điểm của PN. Vậy F' trùng F hay F thuộc DC. Tương tự E thuộc DB.

Gọi O' là giao điểm của EF với DG. Áp dụng định lý Ta let ta có:

\(\frac{EO'}{BG}=\frac{DO'}{DG}=\frac{O'F}{GC}\) mà BG = GC nên EO' = O'F hay O' là trung điểm EF.

Từ đó suy ra O' trùng O hay O thuộc DG. Do A, B, C cố định nên DG cố định,.

Vậy tâm hình chữ nhật luôn nằm trên đoạn thẳng DG.

27 tháng 12 2017
em ko biết
27 tháng 12 2017

Em có thể tham khảo tại đây nhé.

Câu hỏi của Nguyễn Tuấn Minh - Toán lớp 8 - Học toán với OnlineMath

23 tháng 12 2017

a) Hai đường thẳng song song với đường thẳng a và cách đường thẳng a một khoảng là 2cm.

b) Đường tròn O B C 2  với O là trung điểm của BC

c) Đường thẳng trung trực của đoạn BC trừ trung điểm BC.

24 tháng 8 2016

Tam giác ABC có đáy BC cố định, diện tích không đổi nên chiều cao AH không đổi vì thế đỉnh A chuyển động trên một đường thẳng song song với BC và cách BC một khoảng bằng h không đổi.
Vậy trọng tâm G của tam giác chạy trên đường thẳng song song BC và cách BC một khoảng h/3.

#Toán_8 CÁC anh chị (các bạn ) giải giúp em mấy bài này với!Bài 1: Tam giác ABC vuông cân tại C. Trên cạnh AC, BC lấy lần lượt các điểm P,Q sao cho AP=CQ. Từ P vẽ PM song song với BC. (M thuộc AB).a) Chứng minh PCMQ là hình chữ nhật b) Gọi I là trung điểm MQ. CHứng minh rằng khi P di chuyển trên cạnh AC; Q di chuyển trên cạnh BC thì I di chuyển trên một đoạn thẳng cố định.Bài 2: CHo tam giác ABC. Gọi O là...
Đọc tiếp

#Toán_8 CÁC anh chị (các bạn ) giải giúp em mấy bài này với!

Bài 1: Tam giác ABC vuông cân tại C. Trên cạnh AC, BC lấy lần lượt các điểm P,Q sao cho AP=CQ. Từ P vẽ PM song song với BC. (M thuộc AB).
a) Chứng minh PCMQ là hình chữ nhật 
b) Gọi I là trung điểm MQ. CHứng minh rằng khi P di chuyển trên cạnh AC; Q di chuyển trên cạnh BC thì I di chuyển trên một đoạn thẳng cố định.

Bài 2: CHo tam giác ABC. Gọi O là một điểm thuộc miền trong tam giác. M ,N,P,Q lần lượt là trung điểm các đoạn OB , OC, AC và AB.
a) CM MNPQ là hình bình hành
b) Xác định vị trí của O để MNPQ là hình chữ nhật.

Bài 3: Cho tam giác ABC (AB<AC) . Trên AB lấy điểm D. Trên AC lấy điểm E sao cho BD=CE. Gọi I ; K lần lượt là trung điểm của BC và DE. Kéo dài IK cắt AB; AC lần lượt tại M và N. CMR: tam giác AMN cân.

0