K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
3 tháng 11 2019

Lời giải:

Lấy điểm $N$ trên $AB$ sao cho $MN\parallel AC$

Ta có:

\(\overrightarrow{AM}=\overrightarrow{AN}+\overrightarrow{NM}=\frac{AN}{AB}.\overrightarrow{AB}+\frac{NM}{AC}.\overrightarrow{AC}\)

Mà:
\(\frac{AN}{AB}=\frac{MC}{BC}; \frac{NM}{AC}=\frac{MB}{BC}\) theo định lý Ta-let với $MN\parallel AC$

\(\Rightarrow \overrightarrow{AM}=\frac{MC}{BC}\overrightarrow{AB}+\frac{MB}{BC}\overrightarrow{AC}\)

Ta có đpcm.

AH
Akai Haruma
Giáo viên
3 tháng 11 2019

Hình vẽ:

Bài 3. TÍCH CỦA VECTO VỚI MỘT SỐ

15 tháng 12 2020

Có vẻ không đúng.

Giả sử \(\overrightarrow{AB}+\overrightarrow{MB}+\overrightarrow{MA}=\overrightarrow{0}\)

\(\Leftrightarrow\overrightarrow{MB}+\left(\overrightarrow{MA}+\overrightarrow{AB}\right)=\overrightarrow{0}\)

\(\Leftrightarrow\overrightarrow{MB}+\overrightarrow{MB}=\overrightarrow{0}\)

\(\Leftrightarrow2\overrightarrow{MB}=\overrightarrow{0}\)

\(\Leftrightarrow M\equiv B\) (Vô lí)

15 tháng 12 2020

Đề đúng đó bạn ơi Hồng Phúc CTV

Đây là đề thi học kì năm ngoái của trường mình mà.

28 tháng 10 2020

Hình bạn tự vẽ :

AM=AB+BM

=AB+2/3BC

=AB +2/3(BA+AC)

=AB-2/3AB+2/3C

= 1/3 AB + 2/3AC

\(\overrightarrow{AM}=\overrightarrow{AB}+\overrightarrow{BM}\)

\(=\overrightarrow{AB}+\dfrac{2}{3}\overrightarrow{BC}\)

\(=\overrightarrow{AB}+\dfrac{2}{3}\left(\overrightarrow{BA}+\overrightarrow{AC}\right)\)

\(=\dfrac{1}{3}\overrightarrow{AB}+\dfrac{2}{3}\overrightarrow{AC}\)

NV
22 tháng 8 2020

\(\overrightarrow{MB}=-2\overrightarrow{MC}\Leftrightarrow\overrightarrow{MB}=-2\left(\overrightarrow{MB}+\overrightarrow{BC}\right)\)

\(\Rightarrow3\overrightarrow{MB}=-2\overrightarrow{BC}\Rightarrow\overrightarrow{BM}=\frac{2}{3}\overrightarrow{BC}=\frac{2}{3}\left(\overrightarrow{BA}+\overrightarrow{AC}\right)=-\frac{2}{3}\overrightarrow{AB}+\frac{2}{3}\overrightarrow{AC}\)

\(\overrightarrow{AM}=\overrightarrow{AB}+\overrightarrow{BM}=\overrightarrow{AB}-\frac{2}{3}\overrightarrow{AB}+\frac{2}{3}\overrightarrow{AC}=\frac{1}{3}\overrightarrow{AB}+\frac{2}{3}\overrightarrow{AC}\)

\(\Rightarrow\left\{{}\begin{matrix}m=\frac{1}{3}\\n=\frac{2}{3}\end{matrix}\right.\) \(\Rightarrow mn=\frac{2}{9}\)

AH
Akai Haruma
Giáo viên
13 tháng 9 2021

Lời giải:

Theo đề ta có: $\overrightarrow{BM}=2\overrightarrow{MC}=-2\overrightarrow{CM}$

$\overrightarrow{AM}=\overrightarrow{AB}+\overrightarrow{BM}(1)$

$=\overrightarrow{AB}-2\overrightarrow{CM}$

$\overrightarrow{AM}=\overrightarrow{AC}+\overrightarrow{CM}$

$\Rightarrow 2\overrightarrow{AM}=2\overrightarrow{AC}+2\overrightarrow{CM}(2)$

Lấy $(1)+(2)\Rightarrow 3\overrightarrow{AM}=\overrightarrow{AB}+2\overrightarrow{AC}$

$\Rightarrow \overrightarrow{AM}=\frac{1}{3}\overrightarrow{AB}+\frac{2}{3}\overrightarrow{AC}$

AH
Akai Haruma
Giáo viên
13 tháng 9 2021

Hình vẽ:

a;\(\overrightarrow{AB}+2\overrightarrow{AC}\)

\(=\overrightarrow{AM}+\overrightarrow{MB}+2\overrightarrow{AM}+2\overrightarrow{MC}\)

\(=3\overrightarrow{AM}\)

b: \(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\)

\(=\overrightarrow{MG}+\overrightarrow{GA}+\overrightarrow{MG}+\overrightarrow{GB}+\overrightarrow{MG}+\overrightarrow{GC}\)

=3vecto MG