K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
5 tháng 6 2016
- CE; BF là 2 đường trung tuyến của tam giác ABC nên điểm giao D của chúng là trọng tâm của tam giác ABC chia tam giác làm 3 phần bằng nhau.
- Nên diện tích tam giác BCD = 10 cm2.
Muốn tính KB/KD ta tính S(AKB)/S(AKD), trong đó ký hiệu S( ) là diện tích.
S(AKB)/S(AKC) = đường cao hạ từ B xuống AE / đường cao hạ từ C xuống AE (vì hai tam giác có chung đáy AK).
S(KBE)/S(KCE) = đường cao hạ từ B xuống AE / đường cao hạ từ C xuống AE (vì hai tam giác có chung đáy KE).
=> S(AKB)/S(AKC) = S(KBE)/S(KCE)
Mà S(KBE)/S(KCE) =BE/CE = 3/2 (vì hai tam giác chung đường cao hạ từ K xuống BC)
=> S(AKB)/S(AKC) = 3/2
Mặt khác S(AKC) = 2. S(AKD) (vì hai tam giác chung đường cao hạ K và đáy AKC gấp đôi đáy AKD)
=> S(AKB)/ [2S(AKD)] = 3/2
=> S(AKB)/S(AKD) = 3
=> KB/KD = 3
b) S(ABC) =80 => S(BDC) = 1/2 . 80 = 40
Vì KB = 3 KD => S(KBC) = 3/4 S(BDC) = 3/4 . 40 = 30
Và S(KDC) = 1/4 S(BDC) = 1/4. 40 = 10
Ta lại có vì EC/EB = 2/3 => EC/BC = 2/5 => S(KCE) = 2/5 S(KBC) = 2/5 . 30 = 12
Vậy S(KDCE) = S(KCE) + S(KDC) = 12 + 10 = 22 cm2
Muốn tính KB/KD ta tính S(AKB)/S(AKD), trong đó ký hiệu S( ) là diện tích.
S(AKB)/S(AKC) = đường cao hạ từ B xuống AE / đường cao hạ từ C xuống AE (vì hai tam giác có chung đáy AK).
S(KBE)/S(KCE) = đường cao hạ từ B xuống AE / đường cao hạ từ C xuống AE (vì hai tam giác có chung đáy KE).
=> S(AKB)/S(AKC) = S(KBE)/S(KCE)
Mà S(KBE)/S(KCE) =BE/CE = 3/2 (vì hai tam giác chung đường cao hạ từ K xuống BC)
=> S(AKB)/S(AKC) = 3/2
Mặt khác S(AKC) = 2. S(AKD) (vì hai tam giác chung đường cao hạ K và đáy AKC gấp đôi đáy AKD)
=> S(AKB)/ [2S(AKD)] = 3/2
=> S(AKB)/S(AKD) = 3
=> KB/KD = 3
b) S(ABC) =80 => S(BDC) = 1/2 . 80 = 40
Vì KB = 3 KD => S(KBC) = 3/4 S(BDC) = 3/4 . 40 = 30
Và S(KDC) = 1/4 S(BDC) = 1/4. 40 = 10
Ta lại có vì EC/EB = 2/3 => EC/BC = 2/5 => S(KCE) = 2/5 S(KBC) = 2/5 . 30 = 12
Vậy S(KDCE) = S(KCE) + S(KDC) = 12 + 10 = 22 cm2