K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2020

A C B M N

đề sai phải là NA/NB = 3/4

BM là pg của ^ABC (gt)

=> MA/MC = AB/BC (tc)             

mà MA/MC = 1/2 (gt)

=> AB/BC = 1/2           (1)

CN là pg của ^ACB (gt)

=> NA/NB = AC/BC (tc)

mà NA/NB = 3/4

=> AC/BC = 3/4          (2)

(1)(2) => AB/BC : AC/BC = 2/3

=> AB/2 = AC/3

có AB/BC = 1/2 (cmt) => AB = BC/2 => AB/2 = BC/4

=> AB/2 = AC/3 = BC/4

=> AB+AC+BC/2+3+4 = AB/2 = AC/3 = BC/4

AB+AC+BC = 18

=> 18/9 = AB/2 = AC/3 = BC/4

=> AB = 4; AC = 6; BC = 8

7 tháng 4 2020

Lỗi không vẽ hình được nha bạn !!! 

Bài 10 : 

a) Qua B vẽ đường thẳng song song với AD cắt AC tại M . 

Ta có : \(\widehat{B_1}=\widehat{A}_1,\widehat{M}=\widehat{A}_2,\)mà \(\widehat{A}_1=\widehat{A}_2\)

( vì AD là tia phân giác \(\widehat{BAC}\)

Suy ra \(\widehat{B}_1=\widehat{M},\)nên \(\Delta ABM\)cân đỉnh A . 

Từ đó có AM = AB = c 

\(\Delta ABM\)có MB < AM + AB = 2c 

\(\Delta ADC\)có MB // AD ,nên \(\frac{AD}{MB}=\frac{AC}{MC}\)

( Hệ quả của định lí Ta - lét ) , do đó 

\(AD=\frac{AC}{MC}.MB< \frac{AC}{AC+AM}.2c=\frac{2bc}{b+c}\)

b) Từ a) có \(\frac{1}{x}>\frac{1}{2}\left(\frac{1}{b}+\frac{1}{c}\right)\)

Tương tự có \(\frac{1}{y}>\frac{1}{2}\left(\frac{1}{a}+\frac{1}{c}\right),\frac{1}{z}>\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)

Do đó \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}>\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

Bài 8 : 

\(\widehat{D}_1=\widehat{D}_2\Rightarrow\frac{MA}{MB}=\frac{DA}{DB}\Leftrightarrow MA.DB=MB.DA\left(1\right)\)

Mặt khác AM . BD . CN = AN . CD . BM   ( 2 ) 

Chia từng vế của các đẳng thức ( 1 ) và ( 2 ) ta được : 

\(\frac{MA.DB}{AM.BD.CN}=\frac{MB.DA}{AN.CD.BM}\)

Rút gọn được \(\frac{1}{CN}=\frac{DA}{AN.CD}\)   hay \(\frac{AN}{CN}=\frac{DA}{CD}\)

=> DN là tia phân giác của góc ADC

Bài 9 : 

Ta tính được : BC = 10 cm => MC = 5cm ,áp dụng tính chất phân giác trong tam giác có : 

\(\frac{AB'}{B'C}=\frac{AB}{AC}=\frac{6}{10}=\frac{3}{5}\)

\(\Rightarrow\frac{AB'}{3}=\frac{B'C}{5}=\frac{AC}{8}=1\Rightarrow AB'=3cm\)

B'C = 5cm 

=> \(\Delta IMC=\Delta IB'C\left(c.g.c\right)\Rightarrow\widehat{IMC}=\widehat{IB'C}\)

\(\Rightarrow\widehat{AB'B}=\widehat{IMB}\)mà \(\widehat{B}_1=\widehat{B}_2\Rightarrow\widehat{BIM}=\widehat{BAC}=90^o\)

Vậy số đo góc BIM là 90o

7 tháng 4 2020

Củng giống bạn ✰๖ۣۜŠɦαɗøω✰ thôi,nhưng để tránh spam mình sẽ gộp lại giúp bạn nhé !

Ảnh thứ 2 bạn vào TKHĐ của mình nhìn cho rõ nhé !

3 tháng 3 2018

Tam giác ABC có chu vi bằng 74cm, AC là cạnh lớn nhất. Đường phân giác của góc A chia cạnh BC thành hai đoạn tỉ lệ với 2:3; đường phân giác của góc C chia cạnh AB thành hai đoạn tỉ lệ với 4:5. Tính độ dài các cạnh của tam giác ABC. 

AB + BC + AC = 74 (*) 
Trong ∆ ABC phân giác AD → AB/AC = DB/DC = 2/3 (AC > AB) 
→ AB = 2/3 . AC (1) , tương tự với phân giác CE ta suy ra 
BC = 4/5 . AC (2) . Thế tất cả vào (*) ta được: 
2/3 . AC + 4/5 . AC + AC = 74 → 37AC/15 = 74 → AC = 30cm 
thế vào (1) và (2) ta được AB = 10cm, BC = 24cm

1/Cho tam giác ABC cân tại C , có góc ACB=80 độ .Trong tam giác ABC lấy điểm M sao cho MAB = 10 độ . Tính góc AMC ?                 2/ Cho tam giác ABC vuông ở A có cạnh huyền BC bằng hai lần cạnh góc vuông AC , gọi M và N là hai điểm Trên cạnh BC và AC sao cho BM=CN CMR : Trung điểm của đoạn MN ở trên trung tuyến xuất phát từ điểm A của tam giác ABC                                                          3/ Cho tam giác...
Đọc tiếp

1/Cho tam giác ABC cân tại C , có góc ACB=80 độ .Trong tam giác ABC lấy điểm M sao cho MAB = 10 độ . Tính góc AMC ?                 2/ Cho tam giác ABC vuông ở A có cạnh huyền BC bằng hai lần cạnh góc vuông AC , gọi M và N là hai điểm Trên cạnh BC và AC sao cho BM=CN CMR : Trung điểm của đoạn MN ở trên trung tuyến xuất phát từ điểm A của tam giác ABC                                                          3/ Cho tam giác ABC gọi E,F theo thứ tự lần lượt là các trung điểm của AB và AC . Trên tia đối của tia FB ta lấy điểm P sao cho BF = PF . Trên tia đối của tia Bc ta lấy điểm Q sao cho QE = CE CMR a/ AP = AQ b/Ba điểm P,Q,A thẳng hàng c/ cm BQ song song AC và CP song song AB d/Gọi R là giao điểm của hai đường thẳng PC và QB Cm Chu vi tam giác PQB = 2 lần chu vi tam giác ABC e Cm BA đường thẳng AR, BP , CQ đồng qui

0