Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho hình vuông ABCD, M là trung điểm AB. Trên tia đối của tia CB vẽ CN=AM. I là trung điểm MN. Tia DI cắt BC tại E, MN cắt CD tại F. Từ M vẽ MK vuông góc với AB và cắt DE tại K.
a, Cm MKNE là hình thoi (đã làm được)
b, Cm A,I,C thẳng hàng
c, Cho AB=a. Tính diện tích BMEtheo a (Đã làm được)
Giải Giùm mình đi, nhất là câu b
Bài làm:
1) Tam giác BDH ~ Tam giác BEC (g.g) vì:
\(\hept{\begin{cases}\widehat{HBD}=\widehat{EBC}\left(gt\right)\\\widehat{BDH}=\widehat{BEC}=90^0\end{cases}}\)
2)
a) Theo phần 1 có 2 tam giác đồng dạng nên ta có tỉ số sau: \(\frac{BH}{BC}=\frac{BD}{BE}\Leftrightarrow BH.BE=BD.BC\left(1\right)\)
b) Tương tự ta CM được: \(CH.CF=CD.BC\left(2\right)\)
Cộng vế (1) và (2) ta được: \(BH.BE+CH.CF=BD.BC+CD.BC\)
\(=\left(BD+DC\right).BC=BC.BC=BC^2\)
3)
a) Tam giác AEB ~ Tam giác AFC (g.g) vì:
\(\hept{\begin{cases}\widehat{BAE}=\widehat{FAC}\left(gt\right)\\\widehat{AEB}=\widehat{CFA}=90^0\end{cases}}\)
\(\Rightarrow\frac{AE}{FA}=\frac{AB}{AC}\)
Tam giác AEF ~ Tam giác ABC (c.g.c) vì:
\(\hept{\begin{cases}\frac{AE}{FA}=\frac{AB}{AC}\left(cmt\right)\\\widehat{FAE}=\widehat{BAC}\left(gt\right)\end{cases}}\)
\(\Rightarrow\widehat{AEF}=\widehat{ABC}\)
b) Tương tự a ta CM được: \(\widehat{DEC}=\widehat{ABC}\)
\(\Rightarrow\widehat{AEF}=\widehat{DEC}\Leftrightarrow90^0-\widehat{AEF}=90^0-\widehat{DEC}\Rightarrow\widehat{FEB}=\widehat{BED}\)
=> EB là phân giác của tam giác DEF
Tương tự ta chứng minh được DA,FC là các đường phân giác còn lại của tam giác DEF, mà giao 3 đường này là H
=> H là giao 3 đường phân giác của tam giác DEF
=> H cách đều 3 cạnh của tam giác DEF (tính chất đường pg của tam giác)
4) ch nghĩ ra nhé
4)
+) Gọi I là giao điểm của đường trung trực HC và đường trung trực MN
=> IH = IC; IM = IN
Lại có MH = NC ( gt)
=> \(\Delta\)IMH = \(\Delta\)INC => ^MHI = ^NCI mà ^NCI = ^HCI = ^CHI ( vì IH = IC => \(\Delta\)IHC cân )
=> ^MHI = ^CHI hay ^BHI = ^CHI => HI là phân giác ^BHC
=> I là giao điểm của phân giác ^BHC và trung trực HC
=> I cố định
=> Đường trung trực của đoạn MN luôn đi qua một điểm cố định
a) xét t/g CAD và t/g CBE
có ^D=^E (=90o)
^C chug
=> t/g CAD đồng dạn vs t/g CBE (gg)
=> CA/CB = CD/CE
=> CA.CE=CD.CB (1)
b) trog t/g vuông AQC vs đ/c QE ta có
CQ^2 =CA.CE ( hlt) (2)
trog t/g vuông BPC vs đ/c PD ta có
CP^2 =CD.CB (htl) (3)
từ (1) (2) và (3) => CP^2 = CQ^2
CP ; CQ là các đoạn thẳng lên luôn >0
=> CP = CQ