K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2018

a) xét t/g CAD và t/g CBE 
có ^D=^E (=90o) 
^C chug 
=> t/g CAD đồng dạn vs t/g CBE (gg) 
=> CA/CB = CD/CE 
=> CA.CE=CD.CB (1) 
b) trog t/g vuông AQC vs đ/c QE ta có 
CQ^2 =CA.CE ( hlt) (2) 
trog t/g vuông BPC vs đ/c PD ta có 
CP^2 =CD.CB (htl) (3) 
từ (1) (2) và (3) => CP^2 = CQ^2 
CP ; CQ là các đoạn thẳng lên luôn >0 
=> CP = CQ

4 tháng 5 2019

Cho hình vuông ABCD, M là trung điểm AB. Trên tia đối của tia CB vẽ CN=AM. I là trung điểm MN. Tia DI cắt BC tại E, MN cắt CD tại F. Từ M vẽ MK vuông góc với AB và cắt DE tại K.

a, Cm MKNE là hình thoi (đã làm được)

b, Cm A,I,C thẳng hàng

c, Cho AB=a. Tính diện tích  BMEtheo a (Đã làm được)

Giải Giùm mình đi, nhất là câu b

4 tháng 5 2019

BẠn giải giùm mình đi rùi mình giải bài của bạn cho

24 tháng 7 2020

B C A D E F H Bài làm:

1) Tam giác BDH ~ Tam giác BEC (g.g) vì:

\(\hept{\begin{cases}\widehat{HBD}=\widehat{EBC}\left(gt\right)\\\widehat{BDH}=\widehat{BEC}=90^0\end{cases}}\)

2) 

a) Theo phần 1 có 2 tam giác đồng dạng nên ta có tỉ số sau: \(\frac{BH}{BC}=\frac{BD}{BE}\Leftrightarrow BH.BE=BD.BC\left(1\right)\)

b) Tương tự ta CM được: \(CH.CF=CD.BC\left(2\right)\)

Cộng vế (1) và (2) ta được: \(BH.BE+CH.CF=BD.BC+CD.BC\)

\(=\left(BD+DC\right).BC=BC.BC=BC^2\)

3)

a) Tam giác AEB ~ Tam giác AFC (g.g) vì:

\(\hept{\begin{cases}\widehat{BAE}=\widehat{FAC}\left(gt\right)\\\widehat{AEB}=\widehat{CFA}=90^0\end{cases}}\)

\(\Rightarrow\frac{AE}{FA}=\frac{AB}{AC}\)

Tam giác AEF ~ Tam giác ABC (c.g.c) vì:

\(\hept{\begin{cases}\frac{AE}{FA}=\frac{AB}{AC}\left(cmt\right)\\\widehat{FAE}=\widehat{BAC}\left(gt\right)\end{cases}}\)

\(\Rightarrow\widehat{AEF}=\widehat{ABC}\)

b) Tương tự a ta CM được: \(\widehat{DEC}=\widehat{ABC}\)

\(\Rightarrow\widehat{AEF}=\widehat{DEC}\Leftrightarrow90^0-\widehat{AEF}=90^0-\widehat{DEC}\Rightarrow\widehat{FEB}=\widehat{BED}\)

=> EB là phân giác của tam giác DEF

Tương tự ta chứng minh được DA,FC là các đường phân giác còn lại của tam giác DEF, mà giao 3 đường này là H

=> H là giao 3 đường phân giác của tam giác DEF

=> H cách đều 3 cạnh của tam giác DEF (tính chất đường pg của tam giác)

4) ch nghĩ ra nhé

25 tháng 7 2020

4) 

+) Gọi I là giao điểm của đường trung trực HC và đường trung trực MN 

=> IH = IC; IM = IN 

Lại có MH = NC ( gt) 

=> \(\Delta\)IMH = \(\Delta\)INC => ^MHI = ^NCI mà ^NCI = ^HCI = ^CHI ( vì IH = IC => \(\Delta\)IHC cân )

=> ^MHI = ^CHI hay ^BHI = ^CHI => HI là phân giác ^BHC 

=> I là giao điểm của phân giác ^BHC và trung trực HC 

=> I cố định 

=> Đường trung trực của đoạn MN luôn đi qua một điểm cố định

28 tháng 11 2021

ai giúp em với ạ