K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2015

 Giả sử tam giác ABC có các đường cao AH, BK, CI. Ta cần c/m AH, BK, CI đồng quy. 
~~~~~~~ 
Qua 3 đỉnh A, B, C của tam giác, lần lượt kẻ các đường thẳng song song với các cạnh đối diện, chúng cắt nhau tại A'; B'; C'. (A' nằm khác phía với A qua BC, B' nằm khác phía với B qua AC, C' nằm khác phía với C qua AB). 
Xét tam giác ABC và tam giác BAC' có: 
góc BAC = góc ABC' (so le trong) 
AB chung 
góc ABC = góc BAC' (so le trong) 
=> tam giác ABC = tam giác BAC' (gcg) 
=> AC = BC'. 
Chứng minh tương tự ta có AC = BA'. 
=> BC' = BA' => B là trung điểm của A'C'. 
Do BK _|_ AC, A'C' // AC => BK _|_ A'C'. 
=> BK là đường trung trực của A'C'. 
Cmtt => AH và CI là trung trực của B'C' và A'B'. 
=> AH, BK, CI là 3 đường trung trực của tam giác A'B'C'. Ta dễ dàng c/m được 3 đường trung trực của tam giác đồng quy dựa vào tính chất điểm nằm trên đường trung trực của một đoạn thằng thì cách đều hai mút của đoạn thẳng đó. Vậy AH, BK, CI đồng quy tại 1 điểm, điểm đó gọi là trực tâm của tam giác ABC.

Ta có: ΔABC đều

mà AD,BE,CF là các đường trung tuyến

nên AD,BE,CF vừa là đường cao vừa là phân giác

Xét ΔABC có

AD,BE,CF là trung tuyến

AD,BE,CF cắt nhau tai G

=>G là trọng tâm

=>BG=2/3BE=2BM và CG=2/3CF=2CN

=>M,N lần lượt là trung điểm của GB,GC

=>GD,CM,BN đồng quy

=>AD,CM,BN đồng quy

Xét ΔAFC vuông tại F và ΔAEB vuông tại E có

CF=BE

góc ACF=gócABE

=>ΔAFC=ΔAEB

=>AC=AB

Xét ΔCEB vuông tại E và ΔCDA vuông tại D có

EB=DA

góc C chung

=>ΔCEB=ΔCDA

=>CB=CA=AB

=>ΔABC đều