K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2016

a) xét tam giác ABC vuông tại A ta có

BC2=AB2+AC2 (pitago)

152=92+AC2

AC2=152-92

AC  =12

b) xét tam giac MHC và tam giac  MKB ta có

MC=MB ( AM là đường trung tuyến )

MH=MK(gt)

góc CMH= góc BMK ( 2 góc đối đỉnh)

-> tam giác MHC= tam giac MKB (c-g-c)

_> góc MHC= góc MKB (2 góc tương ứng)

mà 2 góc nằm ở vị trí sole trong 

nên BK//AC

b) ta có góc MHC= góc MKB (cmt)

          góc MHC =90 (MH vuông góc AC)

-> góc MKB =90

Xét tam giác ABH vuông tại A và tam giác BKM vuông tại K ta có

BH=BH (cạnh chung)

góc AHB= góc HBK ( 2 góc so le trong và BK//AC)

-> tam giac ABH = tam giac KHM (ch-gn)

-> AH=BK (2 cạnh tương ứng)

mà BK = HC ( tam giác HMC= tam giác KMB)

nên AH=HC

-> H là trung điểm AC

Xét tam giac ABC ta có

BH là đường trung tuyến ( H là trung điểm AC)

AM là dường trung tuyến (gt)

BH cắt AM tai G (gt)

-> G là trọng tâm tam giác ABC

19 tháng 6 2020

tự kẻ hình nha

a) vì tam giác ABC cân A=> AB=AC

xét tam giác ABM và tam giác ACM có

A1=A2(gt)

AB=AC(cmt)

AM chung

=> tam giác ABM= tam giác ACM(cgc)

=> AMB=AMC(hai góc tương ứng)

mà AMB+AMC=180 độ( kề bù)

=> AMB=AMC=180/2=90 độ=> AM vuông góc với BC

b) từ tam giác AMB= tam giác AMC=> BM=CM( hai cạnh tương ứng)

=> M là trung điểm BC=> AM là trung tuyến 

BQ là trung tuyến

mà AM giao BQ tại G=> G là trọng tâm của tam giác ABC

c) ta có BC=BM+CM mà BM=CM=> BM=CM=BC/2=18/2=9 cm

ta có AM^2=AB^2-BM^2=15^2-9^2=225-81=144=12^2=> AM=12

vì G là trọng tâm của tam giác ABC=> AG=2/3AM=> AG=12*2/3=8 cm

d) vì MD//AC=> CAM=AMD( so le trong)

mà CAM=BAM(gt)

=> BAM=AMD=> tam giác AMD cân D=> AD=DM

vì tam giác ABM vuông tại M=> ABM+BAM=90 độ=> ABM=90 độ-BAM

vì AMD+DMB=AMB=> DMB=90 độ-AMD

mà AMD=BAM (cmt)

=> DMB=ABM=> tam giác DMB cân D=> BD=DM=> BD=AD=> D là trung điểm AB=> DC là trung tuyến 

mà G là trọng tâm => G thuộc CD=> D, G, C thẳng hàng

22 tháng 6 2020
Giải. a) Vì AM là tia phân giác của góc BAC nên
5 tháng 7 2020

A B C M 1 2 Q G

A) XÉT \(\Delta ABM\)\(\Delta ACM\)

\(AB=AC\left(GT\right)\)

\(\widehat{A_1}=\widehat{A_2}\left(GT\right)\)

AM LÀ CẠNH CHUNG

=>\(\Delta ABM\)=\(\Delta ACM\)( C-G-C)

TRONG TAM GIÁC CÂN TIA PHÂN GIÁC CŨNG LÀ ĐƯỜNG CAO

=> AM LÀ  ĐƯỜNG CAO CỦA  \(\Delta ABC\)

\(\Rightarrow AM\perp BC\)

B) TRONG TAM GIÁC CÂN TIA PHÂN GIÁC CŨNG LÀ TRUNG TUYẾN 

=> AM LÀ TRUNG TUYẾN THỨ NHẤT CỦA  \(\Delta ABC\)

MÀ BG LÀ ĐƯỜNG TRUNG TUYẾN THỨ HAI CỦA  \(\Delta ABC\)

HAI ĐƯỜNG TRUNG TUYẾN NÀY CẮT NHAU TẠI G

\(\Rightarrow G\)LÀ TRỌNG TÂM CỦA \(\Delta ABC\)

17 tháng 3 2022

tham khảo

+ Vì MAM là đường trung tuyến của ΔABC(gt)ΔABC(gt)

=> MM là trung điểm của BC.BC.

=> BM=CM=12BCBM=CM=12BC (tính chất trung điểm).

=> BM=CM=12.16=162=8(cm).BM=CM=12.16=162=8(cm).

+ Xét ΔABCΔABC có:

AB=AC=17cm(gt)AB=AC=17cm(gt)

=> ΔABCΔABC cân tại A.A.

Có AMAM là đường trung tuyến (gt).

=> AMAM đồng thời là đường cao của ΔABC.ΔABC.

=> AM⊥BC.AM⊥BC.

+ Xét ΔABMΔABM vuông tại M(cmt)M(cmt) có:

AM2+BM2=AB2AM2+BM2=AB2 (định lí Py - ta - go).

=> AM2+82=172AM2+82=172

=> AM2=172−82AM2=172−82

=> AM2=289−64AM2=289−64

=> AM2=225AM2=225

=> AM=15(cm)AM=15(cm) (vì AM>0AM>0).

+ Vì G là trọng tâm của ΔABC(gt).ΔABC(gt).

=> AG=23AMAG=23AM (tính chất trọng tâm của tam giác).

=> AG=23.15AG=23.15

=> AG=303AG=303

=> AG=10(cm).AG=10(cm).

Vậy AM=15(cm);AG=10(cm).