Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B1, a, Xét tứ giác AEHF có: góc AFH = 90o ( góc nội tiếp chắn nửa đường tròn)
góc AEH = 90o (góc nội tiếp chắn nửa đường tròn )
Góc CAB = 90o ( tam giác ABC vuông tại A)
=> tứ giác AEHF là hcn(đpcm)
b, do AEHF là hcn => cũng là tứ giác nội tiếp => góc AEF = góc AHF ( hia góc nội tiếp cùng chắn cung AF)
mà góc AHF = góc ACB ( cùng phụ với góc FHC)
=> góc AEF = góc ACB => theo góc ngoài tứ giác thì tứ giác BEFC là tứ giác nội tiếp (đpcm)
c,gọi M là giao điểm của AI và EF
ta có:góc AEF = góc ACB (c.m.t) (1)
do tam giác ABC vuông tại A và có I là trung điểm của cạng huyền CB => CBI=IB=IA
hay tam giác IAB cân tại I => góc MAE = góc ABC (2)
mà góc ACB + góc ABC + góc BAC = 180o (tổng 3 góc trong một tam giác)
=> ACB + góc ABC = 90o (3)
từ (1) (2) và (3) => góc AEF + góc MAE = 90o
=> góc AME = 90o (theo tổng 3 góc trong một tam giác)
hay AI uông góc với EF (đpcm)
a: góc HBC+góc HCB=90 độ-góc ACB+90 độ-góc ABC=góc BAC
=>góc BHC+góc BAC=180 độ
H đối xứng K qua BC
=>BH=BK và CH=CK
Xét ΔBHC và ΔBKC có
BH=BK
CH=CK
BC chung
=>ΔBHC=ΔBKC
=>góc BKC=góc BHC
=>góc BKC+góc BAC=180 độ
=>ABKC nội tiếp
b: Gọi Ax là tiếp tuyến của (O) tại A
=>góc xAC=góc ABC=góc AEF
=>EF//Ax
=>EF vuông góc OA
c: Xét tứ giác BHCA' có
BH//CA'
BA'//CH
=>BHCA' là hbh
=>H,I,A' thẳng hàng
a) Dễ thấy A, H, K thẳng hàng.
Ta có \(\widehat{KCB}=\widehat{HCB}=90^o-\widehat{ABC}=\widehat{KAB}\).
Suy ra tứ giác ACKB nội tiếp.
b) \(\widehat{ABD}=\widehat{AA'C};\widehat{ADB}=\widehat{ACA'}=90^o\Rightarrow\Delta ABD\sim\Delta AA'C\left(g.g\right)\Rightarrow\widehat{BAD}=\widehat{A'AC}\)
\(\Rightarrow\widehat{AA'C}=90^o-\widehat{ABC}=90^o-\widehat{AEF}\Rightarrow AA'\perp EF\)
c) Ta có BH // A'C (do cùng vuông góc với AC), CH // A'B (do cùng vuông góc với AB) nên tứ giác BHCA' là hình bình hành. Suy ra H, I, A' thẳng hàng.
d) Do OI là đường trung bình của tam giác A'AH nên OI // AH,\(\dfrac{OI}{AH}=\dfrac{1}{2}=\dfrac{IG}{AG}\Rightarrow\) H, G, O thẳng hàng và \(\dfrac{OG}{HG}=\dfrac{1}{2}\). Từ đó \(S_{AHG}=2S_{AOG}\) (đpcm)
Hình : bn tự vẽ ...
Giair
a, Do \(\widehat{AFB}=\widehat{AGB}=90^0\)nên AFCB là tứ giác nội tiếp
b) AFGB là tứ giác nội tiếp nên suy ra, \(\widehat{GAF}=\widehat{FBG}\)(*) ( cùng chắn cung GF )
Lại có \(\widehat{CAD}=\widehat{CBD}\) (cùng chắn cung CD của (O)), nên BHD là tam giác cân.
c) Với (O), từ (*) suy ra: cung CD = cung CE, nên CD = CE.
Do đó, E và H đối xứng với nhau qua AC
d, Do \(\widehat{JBA}=90^0\) (chắn nửa đường tròn) nên BJ // CL.
Tương tự, JC // BF nên BHCJ là hình bình hành, suy ra K là là trung điểm đoạn HJ.
e) Do O và K tương ứng là trung điểm của JA và JH nên OK là đường trung bình của tam giác AHJ
Suy ra, AH = 2OK.
bạn làm đc câu mấy rồi
câu a b c d e
hok tốt