Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xin lỗi bn nhé nhưng mik chỉ làm được câu ,b thui
a/ ΔMABΔMAB và ΔMCDΔMCD có:
MB = MD (gt)
AMBˆ=CMDˆAMB^=CMD^ (đối đỉnh)
MA = MC (M là trung điểm của AC)
=> ΔMABΔMAB = ΔMCDΔMCD (c. g. c) (đpcm)
b/ ΔKMDΔKMD và ΔHMBΔHMB có:
KM = HM (gt)
KMDˆ=BMHˆKMD^=BMH^ (đối đỉnh)
MD = MB (gt)
=> ΔKMDΔKMD = ΔHMBΔHMB (c. g. c)
=> KDMˆ=HBMˆKDM^=HBM^ (hai góc tương ứng bằng nhau ở vị trí so le trong) =>
Hình dễ tự vẽ nhé ! T ngu vẽ hình trên OLM lắm :v
a ) Xét \(\Delta MAB\)và \(\Delta MCD\) có :
AM = CM ( do M là trung điểm của AC )
\(\widehat{AMB}=\widehat{CMD}\) ( hai góc đối đỉnh )
MD = MB ( gt )
nên \(\Delta MAB=\Delta MCD\left(c.g.c\right)\)
b ) Xét \(\Delta BMH\)và \(\Delta DMK\)có :
MD = MB ( gt )
\(\widehat{BMH}=\widehat{DMK}\)( Hai góc đối đỉnh )
MK = MH ( gt )
nên \(\Delta BMH=\Delta DMK\)( c.g.c )
c ) A,K,D là 3 điểm thẳng hàng ( đề ko yêu cầu CM :v )
a/ \(\Delta MAB\) và \(\Delta MCD\) có:
MB = MD (gt)
\(\widehat{AMB}=\widehat{CMD}\) (đối đỉnh)
MA = MC (M là trung điểm của AC)
=> \(\Delta MAB\) = \(\Delta MCD\) (c. g. c) (đpcm)
b/ \(\Delta KMD\) và \(\Delta HMB\) có:
KM = HM (gt)
\(\widehat{KMD}=\widehat{BMH}\) (đối đỉnh)
MD = MB (gt)
=> \(\Delta KMD\) = \(\Delta HMB\) (c. g. c)
=> \(\widehat{KDM}=\widehat{HBM}\) (hai góc tương ứng bằng nhau ở vị trí so le trong) => KD // BH (đpcm)
a) Xét tam giác AMB và tam giác DMC có:
BM = CM (gt)
AM =DM (gt)
\(\widehat{AMB}=\widehat{DMC}\) (Hai góc đối đỉnh)
\(\Rightarrow\Delta AMB=\Delta CMD\left(c-g-c\right)\)
b) Do \(\Delta AMB=\Delta CMD\Rightarrow\widehat{BAM}=\widehat{DCM}\)
Chúng lại ở vị trí so le trong nên AB //CD.
c) Xét tam giác AME có MH là đường cao đồng thời trung tuyến nên tam giác AME cân tại M.
Suy ra MA = ME
Lại có MA = MD nên ME = MD.
d) Xét tam giac AED có MA = ME = MD nê tam giác AED vuông tại E.
Suy ra ED // BC
Xét tam giác cân MED có MK là trung tuyến nên đồng thời là đường cao.
Vậy thì \(MK\perp ED\Rightarrow MK\perp BC\)
a, xét tam giác MAB và tam giác MCD có :
MA=MC(gt)
MB=MD(gt)
\(\widehat{amb}=\widehat{cmd}\)(đối đỉnh)
suy ra : tam giác MAB = tam giác MCD