Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔAMB vuông tại M và ΔANC vuông tại N có
\(\widehat{BAM}\) chung
Do đó: ΔAMB\(\sim\)ΔANC(g-g)
Suy ra: \(\dfrac{AM}{AN}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)
Xét ΔAMN và ΔABC có
\(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)(cmt)
\(\widehat{NAM}\) chung
Do đó: ΔAMN\(\sim\)ΔABC(c-g-c)
a: Xét ΔAMB vuông tại M và ΔANC vuông tạiN có
góc A chung
=>ΔAMB đồng dạng vơi ΔANC
=>AM/AN=AB/AC
=>AM*AC=AB*AN; AM/AB=AN/AC
b: Xét ΔAMN và ΔABC có
AM/AB=AN/AC
góc A chung
=>ΔAMN đồng dạng với ΔABC
=>góc AMN=góc ABC
a: Xét ΔABM vuông tại M và ΔACN vuông tại N có
\(\widehat{BAM}\) chung
Do đó: ΔABM\(\sim\)ΔACN
b: Xét ΔHNB vuông tại N và ΔHMC vuông tại M có
\(\widehat{NHB}=\widehat{MHC}\)
Do đó: ΔHNB\(\sim\)ΔHMC
Suy ra: HN/HM=HB/HC
hay \(HN\cdot HC=HB\cdot HM\)
a, Xét ΔABM và ΔACN có
\(\widehat{N}=\widehat{M}=90^0\)
\(\widehat{A}:chung\)
\(\Rightarrow\Delta ABM\sim\Delta ACN\left(g-g\right)\)
b, Xét ΔNHB và ΔMHC có :
\(\widehat{N}=\widehat{M}=90^0\)
\(\widehat{NHB}=\widehat{MHC}\left(đối\cdotđỉnh\right)\)
\(\Rightarrow\Delta NHB\sim\Delta MHC\left(g-g\right)\)
\(\Rightarrow\dfrac{HB}{HC}=\dfrac{HN}{HM}\)
\(\Rightarrow HB.HM=HC.HN\left(đpcm\right)\)
a: Xét ΔBEH vuông tại E và ΔBMC vuông tại M có
góc B chung
DO đó: ΔBEH đồng dạng với ΔBMC
Suy ra: BE/BM=BH/BC
hay \(BE\cdot BC=BH\cdot BM\)
b: Xét ΔCEH vuông tại E và ΔCNB vuông tại N có
góc C chung
Do đó: ΔCEH đồng dạng với ΔCNB
Suy ra: CE/CN=CH/CB
hay \(CE\cdot CB=CH\cdot CN\)
e: Xét ΔBNC vuông tại N và ΔBEA vuông tại E có
góc B chung
DO đó: ΔBNC đồng dạng với ΔBEA
Suy ra: BN/BE=BC/BA
hay BN/BC=BE/BA
Xét ΔBNE và ΔBCA có
BN/BC=BE/BA
góc B chung
Do đó: ΔBNE đồng dạng với ΔBCA