K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBAC có 

AD là đường cao ứng với cạnh BC

BE là đường cao ứng với cạnh AC

AD cắt BE tại H

Do đó: H là trực tâm của ΔBAC

Suy ra: CH\(\perp\)AB tại F

Xét ΔFAH vuông tại F và ΔFCB vuông tại F có 

\(\widehat{FAH}=\widehat{FCB}\left(=90^0-\widehat{FBC}\right)\)

Do đó: ΔFAH\(\sim\)ΔFCB

a: sin ACB=AH/AC

=>AH/AC=1/2

=>AH=4cm

b: sin ABC=2/3

=>AH/AB=2/3

=>AB=6cm

HB=căn 6^2-4^2=2căn  5cm

HC=căn 8^2-4^2=4căn  3cm

BC=HB+HC=2căn5+4căn3(cm)

S ABC=1/2*BA*BC*sinB

=1/2*1/2*6*(2căn5+4căn3)

=3(căn 5+2căn 3)