K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2022

a) Áp dụng định lý Py-ta-go, ta có:

         BC² = AB² + AC²

         BC² = 3² + 4²

         BC² = 9 + 16 = 25

     ⇒ BC =√25 = 5 cm

b) Xét ΔABD ( A = 90*) và ΔHBD ( H = 90*), có

             BD chung

             ABD = HBD ( BD là tia phân giác của góc ABC )

⇒ ΔABD = ΔHBD ( cạnh huyền - góc nhọn)

c) ΔHDC, có: BHD là góc vuông

⇒ DC là cạnh lớn nhất

⇒ HD < DC

Mà HD = DA (ΔABD = ΔHBD)

⇒ DA < DC (đpcm)

2 tháng 3 2022

a) Xét ΔABCΔABC vuông tại A có :

        \( A B ² + A C ² = B C ² (đ/l Py-ta-go)\)

    \( ⇒ 3 ² + 4 ² = B C ²\)

    \(⇒ B C ² = 25\)

  \(⇒ B C = 5 ( c m )\)

    Vậy \(BC=5cm\)

 b) Xét \(Δ A B D và Δ H B D\)có :

    \(+ ∠ B A D = ∠ B H D = 90 °\)

     \(+ B D c h u n g\)

      \(+ ∠ A B D = ∠ C B D \) (BD là phân giác của ∠B)

    \( ⇒ Δ A B D = Δ H B D (ch-gn)\)

     Vậy \(Δ A B D = Δ H B D\)

tôi chx bt lm

xin lỗi nhé

28 tháng 3 2019

help me

22 tháng 3 2020

điểm H ở đây thê

25 tháng 2 2020

A M N B C F H D E I

Thấy cái ý △AMN cân với cái chứng minh BAC = 1/2 MAN cũng ko lên quan lắm. Tham khảo qua ạ tại câu b hơi có vấn đề :(

a) Xét △AHB và △AHC có:

AHB = AHC (= 90o)

AH: chung

AB = AC (△ABC cân)

=> △AHB = △AHC (ch-cgv)

b) Xét △ADM và △ADH có:

ADM = ADH (= 90o)

DM = DH (gt)

AD: chung

=> △ADM = △ADH (2cgv)

=> AM = AH (2 cạnh tương ứng) (1)

Xét △ANE và △AHE có:

AEH = AEN (= 90o)

EH = EN (gt)

AE: chung

=> △ANE = △AHE (2cgv)

=> AN = AH (hai cạnh tương ứng) (2)

Từ (1) và (2) => AM = AN => △AMN cân tại A

Ta có: MAN = MAB + BAH + HAC + CAN

Mà MAB = HAB, HAC = CAN (suy ra được từ các tam giác bằng nhau)

=> MAN = 2BAH + 2 HAC

=> MAN = 2BAC

=> BAC = 1/2MAN

c) Ta có: HAD = HAE (△AHB = △AHC)

Mà HAD = DAM, HAE = EAN

=> HAD + DAM = HAE + EAN

=> HAM = HAN

Gọi giao điểm AH và MN là F

Xét △AFM và △AFN có:

AF: chung

FAM = FAN (cmt)

AM = AN (cmt)

=> △AFM = △AFN (c.g.c)

=> AFM = AFN (2 góc tương ứng)

Mà AFM + AFN = 180o => AFM = AFN = 90o

=> AH vuông góc MN (1)

Gọi giao điểm của DE và AH là I

Xét △ADH và △AEH có:

ADH = AEH (= 90o)

AH: chung

HAD = HAE (△HAB = △HAC)

=> △ADH = △AEH (ch-gn)

=> AD = AE (2 cạnh tương ứng)

Xét △AID và △AIE có:

AI: chung

IAD = IAE (cmt)

AD = AE (cmt)

=> △AID = △AIE (c.g.c)

=> AID = AIE (2 góc tương ứng)

Mà AID + AIE = 180o => AID = AIE = 90o

=> AH vuông góc DE (2)

Từ (1) và (2) => MN // DE

25 tháng 2 2020

d) \(\Delta\)ABC cân tại A  có AH là đường cao

=> AH là đường trung tuyến

=> H là trung điểm BC 

=> BH = HC = BC : 2 = 3 ( cm )

\(\Delta\)ABH vuông tại H  => AB2 - BH2 = AH2 => AH = 4 cm

=> S ( \(\Delta\)ABH ) = \(\frac{1}{2}\)BH . AH =\(\frac{1}{2}\) HD . AB 

=> 3.4 = HD . 5 => HD = 2,4 cm

\(\Delta\)BDH vuông tại D => BD2 = BH2 - HD = 3,24 => BD = 1,8 cm

Xét ΔAND có

AM vừa là đường cao, vừa là trung tuyến

=>ΔAND cân tại A

=>AB là phân giác của góc NAD(1)

Xét ΔADK có

AC vừa là đường cao, vừa là trung tuyến

=>ΔADK cân tại A

=>AC là phân giác của góc DAK(2)

Từ (1), (2) suy ra góc NAK=2*90=180 độ

=>N,A,K thẳng hàng

mà AN=AK

nên A là trung điểm của NK

a: Xét ΔABC có AB<AC
mà HB là hình chiếu của AB trên BC

và HC là hình chiếu của AC trên BC

nên HB<HC

b: Xét ΔABI có 
AH là đường cao

AH là đường trung tuyến

Do đó: ΔABI cân tại A

a: Xét ΔAMD vuông tại M và ΔAND vuông tại N có

AD chung

góc MAD=góc NAD

=>ΔMAD=ΔNAD

=>AM=AN

b: Xét ΔACB có AM/AB=AN/AC

nên MN//BC

c: Xét ΔADE có

AM vừa là đường cao, vừa là trung tuýen

=>ΔADE cân tại A

=>AD=AE

Xét ΔADF có

AN vừa là đường cao, vừa là trung tuyến

=>ΔADF cân tại A

=>AD=AF

=>AE=AF

=>ΔAEFcân tạiA