Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác AMB và tam giác DMC:
AM = DM (gt).
BM = CM (M là trung điểm của cạnh BC).
\(\widehat{AMB}=\widehat{DMC}\) (Đối đỉnh).
\(\Rightarrow\Delta AMB=\Delta DMC\left(c-g-c\right).\)
b) Xét tam giác ABD và tam giác DCA:
AB = DC \(\left(\Delta AMB=\Delta DMC\right).\)
AD chung.
\(\widehat{BAD}=\widehat{CDA}\) \(\left(\Delta AMB=\Delta DMC\right).\)
\(\Rightarrow\Delta ABD=\Delta DCA\left(c-g-c\right).\)
Xét \(\Delta ABD:AB+BD>AD.\Leftrightarrow AB+BD>2AM.\)
Mà \(BD=AC\) \(\left(\Delta ABD=\Delta DCA\right).\)
\(\Rightarrow AB+AC>2AM.\)
a) Sửa đề: ΔAMB=ΔDMC
Xét ΔAMB và ΔDMC có
MA=MD(gt)
\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)
MB=MC(M là trung điểm của BC)
Do đó: ΔAMB=ΔDMC(c-g-c)
a: Xét ΔAMB và ΔDMC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
Do đó: ΔAMB=ΔDMC
b: ta có: ΔAMB=ΔDMC
nên AB=DC
a) Xét ΔAMB và ΔDMC có
MA=MD(gt)
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
Do đó: ΔAMB=ΔDMC(c-g-c)
b) Xét ΔAMC và ΔDMB có
MA=MD
\(\widehat{AMC}=\widehat{DMB}\)
MC=MB
Do đó: ΔAMC=ΔDMB(c-g-c)
Suy ra: AC=BD(hai cạnh tương ứng) và \(\widehat{ACM}=\widehat{DBM}\)(hai góc tương ứng)
mà hai góc này là hai góc ở vị trí so le trong
nên AC//BD