Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Tam giác ABC có AO là phân giác
\(\Rightarrow\dfrac{OB}{AB}=\dfrac{OC}{AC}\)
\(\Rightarrow\dfrac{OB}{15}=\dfrac{OC}{25}\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\dfrac{OB}{15}=\dfrac{OC}{25}=\dfrac{OB+OC}{15+25}=\dfrac{BC}{40}=\dfrac{30}{40}=\dfrac{3}{4}\)
\(\Rightarrow\left\{{}\begin{matrix}OB=\dfrac{3}{4}.15=11,25\left(cm\right)\\OC=\dfrac{3}{4}.25=18,75\left(cm\right)\end{matrix}\right.\)
Bài 1:
Xét ΔABC có
AO là đường phân giác ứng với cạnh BC(gt)
nên \(\dfrac{OB}{AB}=\dfrac{OC}{AC}\)(Tính chất đường phân giác của tam giác)
\(\Leftrightarrow\dfrac{OB}{15}=\dfrac{OC}{25}\)
mà OB+OC=BC(O nằm giữa B và C)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{OB}{15}=\dfrac{OC}{25}=\dfrac{OB+OC}{15+25}=\dfrac{BC}{40}=\dfrac{30}{40}=\dfrac{3}{4}\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{OB}{15}=\dfrac{3}{4}\\\dfrac{OC}{25}=\dfrac{3}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}OB=\dfrac{45}{4}cm\\OC=\dfrac{75}{4}cm\end{matrix}\right.\)
Vậy: \(OB=\dfrac{45}{4}cm;OC=\dfrac{75}{4}cm\)
Bài 2:
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=5^2+12^2=169\)
\(\Leftrightarrow BC=\sqrt{169}=13cm\)
Xét ΔABC có
AI là đường phân giác ứng với cạnh BC(gt)
nên \(\dfrac{IB}{AB}=\dfrac{IC}{AC}\)(Tính chất đường phân giác của tam giác)
\(\Leftrightarrow\dfrac{IB}{5}=\dfrac{IC}{12}\)
mà IB+IC=BC(I nằm giữa B và C)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{IB}{5}=\dfrac{IC}{12}=\dfrac{IB+IC}{5+12}=\dfrac{BC}{17}=\dfrac{13}{17}\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{IB}{5}=\dfrac{13}{17}\\\dfrac{IC}{12}=\dfrac{13}{17}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}IB=\dfrac{65}{17}cm\\IC=\dfrac{156}{17}cm\end{matrix}\right.\)
Vậy: \(IB=\dfrac{65}{17}cm;IC=\dfrac{156}{17}cm\)
a: Xét ΔABC co AI là phân giác
nên IB/IC=AB/AC
=>AB/6=3/4,5=2/3
=>AB=4cm
Xét ΔBAC có MI//AC
nên MI/AC=BM/BA=BI/BC=3/7,5=2/5
=>MI/6=BM/4=2/5
=>MI=12/5cm; BM=8/5cm
b: MB/MA=BI/IC=BA/AC
d, tim AH=16,8cm do tam giác ABH dồng dạng với tam giác CBA các cạnh tuong ứng tỉ lệ
tinh CD tính chất dg pg \(\frac{CD}{DB}=\frac{AC}{AB}\)
tính chat day ti so bang nhau
\(\frac{CD}{DB+CD}=\frac{AC}{AB+AC}\)
thế số vao rồi tính suy ra CD=20, BD=15
pytago trong tam giác HAC tińh CH=22,4
suy ra DH=2,4
Diện tích tam giác AHD=1/2 *AH*DH=20,16
Ban có thể tính laị so lieu
Bài 1 : Hình (bn tự vẽ giùm mik )
Lời giải : Xét ▲AID và ▲BIC có :
AD = BC (vì hình thang cân ABCD)
*DAI = *ICB (slt)
*ADI = IBC ( vì 2 tam giác đã cm 2 góc = nhau => góc còn lại = nhau )
=> ▲AID = ▲BIC (g.c.g)
=> IA = IB (đpcm) , ID = IC (đpcm )
a: Xét ΔABC vuông tại A có AD là đường cao
nên \(AD^2=BD\cdot CD\)
b: \(CB=\sqrt{3^2+4^2}=5\left(cm\right)\)
AD=3*4/5=2,4cm
c: BI là phân giác
=>DI/IA=DB/BA
AK là phân giác
=>DK/KC=DA/AC
mà DB/BA=DA/AC
nên DI/IA=KD/KC
=>KI//AC