K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 4 2022

a) Vì ∆ABC cân tại A có AH là đường cao nên AH cũng là đường trung tuyến

Suy ra BH=CH

Xét ∆AHB và ∆AHC có

AH là cạnh chung

BH=CH (cmt)

AB=AC (∆ABC cân tại A)

Do đó ∆AHB=∆AHC

Xét ∆AMH ta có

AD vuông góc với MH (HD vuông góc AB)

Suy ra AD là đường cao của ∆AMH (1)

DH=DM (gt)

Nên AD là đường trung bình của ∆AMH (2)

Từ (1) và (2) suy ra ∆AMH cân tại A

Suy ra AM=AH

21 tháng 6 2021

giúp mik nhanh câu c dc khum ạ

2 câu kia mik xong r

cảm ơn các bạn

a: Xét ΔAHB vuông tại H và ΔDHB vuông tại H có 

HB chung

HA=HD

Do đó: ΔAHB=ΔDHB

a: Xét ΔAHB vuông tại H và ΔDHB vuông tại H có 

HB chung

HA=HD

Do đó: ΔAHB=ΔDHB

HT

25 tháng 1 2016

hình như bài này sai đề

 

6 tháng 11 2017

Diễn giải:

- Khi cộng, trừ số thập phân ta tiến hành cộng hoặc trừ các phần tương ứng của các số đó.

Ví dụ 1:

Tính 0,25 + 2,5 ta làm như sau: 5 + 0 = 5 , 2 + 5 =7, 0 + 2 = 2. Vậy 0,25 + 2,5 = 2.75

Tính 8,6 - 2,7 ta làm như sau: 6 - 7 không trừ được ta lấy 16 - 7 = 9, tiếp tục 8 - 2 trừ thêm 1 nữa tức là 8 -3 = 5. Vậy 8,6 - 2,7 = 5,9

- Với phép nhân, chia các số thập phân ta cần viết chúng dưới dạng phân số.

13 tháng 4 2021

Tự vẽ hình nhé bạn:vv

a) Xét ∆MHC và ∆MKB:

\(\widehat{CMH}=\widehat{BMK}\) (2 góc đối đỉnh)

\(CM=MB\left(gt\right)\)

\(HM=MK\left(gt\right)\)

=> ∆MHC=∆MKB(c.g.c)

b) Vì ∆ABC vuông ở A có đường trung tuyến AM

\(\Rightarrow AM=\dfrac{1}{2}BC=MC=MB\)

=> ∆AMC cân tại M

=> MH vừa là đường cao vừa là đường trung tuyến của ∆AMC.

=> AH=CH

Mà theo câu a: ∆MHC=∆MKB 

=> CH=KB (2 cạnh tương ứng)

=> AH=KB

=> Đpcm

c) Xét ∆ABC có : AM và BH là 2 đường cao

=> I là trọng tâm của ∆ABC

Mà D là trung điểm của AB

=> CD là đường cao thứ 3 của ∆ABC

=> CD phải đi qua trọng tâm I

=> C, D, I thẳng hàng.

a) Xét ΔMHC và ΔMKB có

MH=MK(gt)

\(\widehat{HMC}=\widehat{KMB}\)(hai góc đối đỉnh)

MC=MB(M là trung điểm của BC)

Do đó: ΔMHC=ΔMKB(c-g-c)

Hình như đề bài thiếu nha bạn

12 tháng 11 2018

a) \(\Delta ABM\)và \(\Delta ACM\)

+ AB = AC(gt)

+ BM = CM(gt)

+ Chung AM 

Vậy \(\Delta ABM=\Delta ACM\left(c.c.c\right)\)

Suy ra \(\widehat{ABC}=\widehat{ACB}\)(hai góc tương ứng)

=> \(180^0-\widehat{ABC}=180^0-\widehat{ACB}\)

\(\Rightarrow\widehat{ABD}=\widehat{ACE}\)

Xét \(\Delta ABD\)và \(\Delta ACE\)

\(\widehat{ABD}=\widehat{ACE}\)

+ AB = AC (gt)

+BD = EC(gt)

\(\Rightarrow\Delta ABD=\Delta ACE \left(c.g.c\right)\)

12 tháng 11 2018

Xét \(\Delta AHB\)và \(\Delta AKC\)

+ AH = AK (gt)

+ AB = AC (gt)

\(\widehat{DAB}=\widehat{EAC}\)(hai góc tương ứng)

\(\Rightarrow\Delta AHB=\Delta AKC\left(c.g.c\right)\)

=> HB=CK ( hai cạnh tương ứng)

d) Vì O là giao điểm của HB và AM nên O,A,M nằm trên cùng một đường thẳng 

Nên \(\widehat{OAM}=\widehat{BAM}+\widehat{BAO}=\widehat{CAM}+\widehat{CAO}\)

\(\widehat{BAM}=\widehat{CAM}\)vì hai góc tương ứng (cmt)

\(\Rightarrow\widehat{BAO}=\widehat{CAO}\)

Xét \(\Delta BAO=\Delta CAO\)

+ AB = CA (gt)

+ Chung AO

\(\widehat{BAO}=\widehat{CAO}\)(cmt)

\(\Delta BAO=\Delta CAO\left(c.g.c\right)\)

=>OB = OC (hai cạnh tương ứng)