Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do AD là trung tuyến của tam giác ABC và G là trọng tâm nên AG = 2/3 . AD = 2/3. 18 = 12 cm
BE là trung tuyến của tam giác ABC và G là trọng tâm nên GE = 1/3. BE = 1/3. 15 = 5 cm
b) 3 đường trung tuyến trong 1 tam giác luôn cắt nhau tại 1 điểm nên CG chính là đường trung tuyến của tam giác ABC
c) Điểm A nằm ngoài đường thẳng Bc có: AD là đường xiên và AB là đường vuông góc
do đó : AB < AD (mối quan hệ giữa đường vuông góc và đường xiên)
Ta có BE và AD là 2 đường trung tuyến=>G là trực tâm
=>BG=\(\dfrac{2}{3}\)BE=\(\dfrac{2}{3}\).9cm =6 cm
và GD= \(\dfrac{1}{2}\)AG=\(\dfrac{1}{2}\).8cm =4cm
KL
Lời giải:
$G$ là trọng tâm tam giác $ABC$
Theo tính chất trọng tâm và đường trung tuyến thì:
$\frac{AG}{AD}=\frac{2}{3}$
$\Rightarrow 3AG=2AD$
$\Rightarrow 2(AD-AG)=AG$
$\Rightarrow 2DG=AG\Rightarrow \frac{DG}{AG}=\frac{1}{2}$
$\frac{BG}{BE}=\frac{2}{3}$
$\Rightarrow \frac{BE-GE}{BE}=\frac{2}{3}$
$\Rightarrow 1-\frac{GE}{BE}=\frac{2}{3}$
$\Rightarrow \frac{GE}{BE}=\frac{1}{3}$
$\Rightarrow \frac{BE}{EG}=3$
Theo tính chất đường trung tuyến ta có
\(\frac{AG}{AD}=\frac{GB}{BE}=\frac{2}{3}\)
\(\Leftrightarrow\frac{AG}{12}=\frac{GB}{9}=\frac{2}{3}\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{AG}{12}=\frac{2}{3}\\\frac{GB}{9}=\frac{2}{3}\end{cases}\Rightarrow\orbr{\begin{cases}AG=8\left(cm\right)\\GB=6\left(cm\right)\end{cases}}}\)
Vì \(G\in BE\)
\(\Rightarrow BG+GE=BE\)
\(\Rightarrow GE=9-6=3\left(cm\right)\)
Vậy \(AG=8cm\) và \(GE=3cm\)
Bác lm dài thế >: t/c 3 đg trung tuyến áp dụng luôn cx đc mà.
Theo t/c 3 đường trung tuyến ta có :
\(AG=\frac{2}{3}AD=\frac{2}{3}.12=\frac{24}{3}=8\left(cm\right)\)
\(GE=\frac{1}{3}BE=\frac{1}{3}.9=\frac{9}{3}=3\left(cm\right)\)