Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mình không vẽ hình nhé
1/ có EAD=BAD mà BAD=EDA (2 góc sltrong, ED//AB) nên EAD=EDA
2/ có EAD=EDA (cmt)
mà EAD=CEK (2 góc dồng vị, EK//AD) ; EDA=DEK (2 góc sltrong, EK//AD)
nên CEK=DEK => EK là tia p/g của DEC
\(\Delta ABC\)có đường phân giác AD
=> BÂD = DÂC
1/ Ta có:
DE // AB => BÂD = ^ADE [so le trong]
Mà BÂD = DÂC => EÂD = ^EDA
2/ Ta lại có:
AD // EK => EÂD = CÊK [đồng vị]
Mà EÂD = ^EDA
=> ^EDA = CÊK
Mà ^EDA = ^DEK [so le trong]
=> CÊK = DÊK
Vậy EK là tia phân giác của DÊC
https://lazi.vn/edu/exercise/cho-tam-giac-abc-co-goc-a-120-do-duong-phan-giac-ad-d-thuoc-bc-ve-de-vuong-goc-voi-ab-df-vuong-goc
a) ΔAED=ΔAFDΔAED=ΔAFD(ch-gn)nên DE=DF.(hai cạnh tương ứng)
Mặt khác dễ dàng chứng minh được EDFˆ=60o
Vì vậy tam giác DEF là tam giác đều
b)ΔEDK=ΔFDT(hai cạnh góc vuông)
nen DK=DI(hai cạnh tương ứng).Do đó Tam giác DIK cân ở D
c) AD là tia phân giác của góc BAC nên DAB^=DAC^=1/2BAC^=60o
AD//MC(gt),do đó AMCˆ=DABˆ=60o(hai góc nằm trong vị trí đồng vị)
AMC^=CAD^=60o(hai góc nằm trong vị trí sole trong)
Tam giác AMC có hai góc bằng nhau và khoảng 60o nên là tam giác đều
d)Ta có AF=AC-FC=CM-FC=m-n.
a, xét hai tam giác AED và AFD có:
góc AFD = góc AED (góc vuông)
góc EAD= góc FAD (AD là tia phân giác của góc A)
AD cạnh chung
nên tam giác vuông AED = tam giác vuông AFD ( cạnh huyền góc nhọn)
từ giả thiết trên
=> DE=DF
=> tam giác DEF là tam giác cân
Mà:
D là góc đối của góc A
DA là tia phân giác của A=120 độ
=> D= 60 độ Áp dụng tính chất tổng ba góc trong một tam giác ta có 180‐ 60 = 120 độ
DEF là tam giác cân nên góc E= góc F nên 120/2= 60 độ
Vậy góc D= E= F= 60 độ hay DEF là tam giác đều
b. Tam giác EAD=tam giác FAD(ch‐gn)
=>AE=AF
Mà KE=FI
=> AE+EK=AF+FI
=> AK=AI
Xét tam giác AKD và tam giác AID
AK=AI
KAD=IAK
AD chung
=> tam giác AKD= tam giác AID(cgc)
=> DK=DI
=> ΔDIK cân
=> đcpcm
c, Có:
^BAC + ^MAC = 180°
=> ^MAC = 180° - ^BAC
=> ^MAC = 180° - 120°
=> ^MAC = 60°
Lại có:
AD // MC
=> ^MCA = ^CAD = 60°
=> △ACM đều
Vì AB//DE(GT)
=>^EDA=^BAD( sole trong)
Mà AD là tia pg của ^A(gt)
=>BAD=^EAD
Nên: ^EAD=^EDA
b) Có: AD//EK
=> ^DAE=^KEC (1)
^ADE=DEK
Mà ^EAD=^ADE
=> DAE=^DEK (2)
Từ (1)(2) suy ra:
^DEK=^KEC
=> EK là tia pg của ^DEC