Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
\(\widehat{ABC}\) chug
Do đó: ΔABC∼ΔHBA
Suy ra: BA/BH=BC/BA
hay \(BA^2=BH\cdot BC\)
b: Xét tứ giác ACDH có
M là trung điểm của AD
M là trung điểm của CH
Do đó: ACDH là hình bình hành
Suy ra: AH//DC
Bài 2
gọi E là trung điểm của KB
Vì tam giác CKB có BM=MC ; BE=EK
=>EM//KC
Vì tam giác ENM có AN=AM ; KA//EM
=>EK=KN
Vì KN=KE=EB=>NK=1/2KB
a: Xét tứ giác ACDB có
M là trung điểm của BC
M là trung điểm của AD
Do đó: ACDB là hình bình hành
mà \(\widehat{BAC}=90^0\)
nên ACDB là hình chữ nhật
a: Xét tứ giác ACDB có
M là trung điểm của AD
M là trung điểm của BC
Do đó: ACDB là hình bình hành
mà \(\widehat{BAC}=90^0\)
nên ACDB là hình chữ nhật
b,- Ta có : AM là đường trung tuyến của tam giác vuông ABC .
=> AM = BM = CM = KM .
Xét \(\Delta MKC\) và \(\Delta MAB\) có :
\(\left\{{}\begin{matrix}BM=MC\\AM=MK\\\widehat{BMA}=\widehat{KMC}\end{matrix}\right.\)
=> \(\Delta MKC\) = \(\Delta MAB\) ( c - g - c )
- Xét tứ giác ABKC có :
AM = BM = CM = KM và tam giác ABC vuông tại A .
=> Tứ giác ABKC là hình chữ nhật.
=> KC vuông góc với AC .
c, - Áp dụng định lý pitago vào tam giác ABC vuông tại A :
\(BC=\sqrt{AB^2+AC^2}=13\left(cm\right)\)
Ta có : \(AM=\dfrac{1}{2}BC=\dfrac{13}{2}\)
a)Xét tứ giác ABDC :
AM = MD ; BM = MC
=>Tứ giác ABDC là hình bình hành
Mà góc BAC = 90 = >Tứ giác ABDC là hcn
b)Xét tam giác AID :
AH= HI ; AM = MD (gt)
=> HM song song ID ( đường tb)
=>tứ giác BIDC la ht
AC la trung truc AI = > tam giac ABI can tai B
=> AB = BI ma AB = DC ( ABDC la hcn )=> BI = DC
hay BIDC la hinh thang can
c) Ta có góc ACB = góc AHM = góc AEF
góc BAM = góc ABM
mà góc ABM + góc ACM = 90 => góc AEF + góc BAM = 90 độ hay AM vuông góc EF ( đccm)
Hình thì bn tự vẽ nha
a,a, Xét ΔMACΔMAC và ΔMDCΔMDC ta có:
+) MB=MCMB=MC (AM là trung tuyến nên M là trung điểm của BC)
+) AMBˆ=DMCˆAMB^=DMC^ (đối đỉnh)
+) MA=MB(gt)MA=MB(gt)
⇒ΔMAC=MDC⇒BAMˆ=CDMˆ⇒ΔMAC=MDC⇒BAM^=CDM^ Và CD=AB<ACCD=AB<AC
Trong ΔADC:AC<CD⇒ADCˆ>DACˆ(dpcm1)ΔADC:AC<CD⇒ADC^>DAC^(dpcm1)
Vì MABˆ=MDCˆ⇒MABˆ=ADCˆ>MACˆMAB^=MDC^⇒MAB^=ADC^>MAC^
⇒MAB>MAC⇒MAB>MAC
b, AH vuông với BC tại H
=> H là hình chiếu của A trên BC
HB là đường chiếu tương ứng của đường xiên AB
HC là đường chiếu tương ứng của đường xiên AC
Mà AB<AC⇒HB<HC(dpcm3)AB<AC⇒HB<HC(dpcm3)
Mặt khác E thuộc AH => HB cũng là đường chiếu của đường xiên EB
HC là hình chiếu của đường xiên EC
Mà HB<HC(theodpcm3)HB<HC(theodpcm3)
⇒EC<EB(dpcm4)
bn giải thích rõ hơn đi ạ