K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
30 tháng 10 2021
a, Vì \(BC^2=400=256+144=AC^2+AB^2\) nên tam giác ABC vuông tại A
b, Áp dụng HTL: \(AM=\dfrac{AB\cdot AC}{BC}=9,6\left(cm\right)\)
\(BM=\dfrac{AB^2}{BC}=7,2 \left(cm\right)\)
c, Áp dụng HTL: \(AE\cdot AB=AM^2\)
Áp dụng PTG: \(AM^2=AC^2-MC^2\)
Vậy \(AE\cdot AB=AC^2-MC^2\)
d, Áp dụng HTL: \(AE\cdot AB=MB\cdot MC=AM^2\)
\(\left\{{}\begin{matrix}\widehat{EAM}=\widehat{ACM}\left(cùng.phụ.\widehat{MAC}\right)\\\widehat{AEM}=\widehat{AMC}=90^0\end{matrix}\right.\Rightarrow\Delta AEM\sim\Delta CMA\left(g.g\right)\\ \Rightarrow EM\cdot AC=AM^2\)
Vậy ta được đpcm
a: Xét ΔABC có
\(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AB\cdot AC=AH\cdot BC\)
\(\Leftrightarrow AH\cdot20=12\cdot16=192\)
hay AH=9,6(cm)