Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cách giải đây
\(\Delta ABC\)có AB = AC suy ra tam giác ABC tà tam giác cân
xét \(\Delta EBC\)và\(\Delta DCB\)
góc B = góc C ( tam giác cân )
BC là cạnh huyền chung
do đó tam giác EBC = tam giác DCB ( cạnh huyền - góc nhọn )
suy ra BD = CE ( 2 cạnh tương ứng )
b)
xét \(\Delta AHB\)và \(\Delta AHC\)có \(\hept{\begin{cases}AB=AC\left(gt\right)\\\widehat{B}=\widehat{C}\left(gt\right)\\BH=HC\left(gt\right)\end{cases}}\)
do đó \(\Delta AHB=\Delta AHC\left(c.g.c\right)\\ \Rightarrow\widehat{BAH}=\widehat{CAH}\)( 2 góc tương ứng)
xét tam giác vuông AIE và tam giác vuông AID có
AI là cạnh huyền chung
góc BAH = góc CAH ( cmt)
do đó tam giác AIE = tam giác AID ( cạnh huyền - góc nhọn )
suy ra EI = ID ( 2 cạnh tương ứng )
c) góc BAH = góc CAH mà tia AH nằm giữa tia AB và AC nên AH là phân giác góc BAC (1)
tam giác AIE = tam giác AID suy ra góc EAI = góc DAI ( 2 góc tương ứng )
mà tia AI nằm giữa 2 tia AE và AD suy ra AI là phân giác góc EAD hay góc BAC (2)
từ (1) và (2) suy ra ba điểm A;I:H thẳng hàng
a) Xét tam giác BDC và tam giác CEB có:
Góc B = Góc C ( vì AB = AC => tam giác ABC cân tại A )
Góc BDC = Góc CEB ( = 90 độ )
BC : cạnh chung
Do đó : Tam giác BDC = tam giác CEB ( cạnh huyền - góc nhọn )
=> BD = CE ( hai cạnh tương ứng )
b) Xét tam giác
c) Ta có AB = AC(gt)
Tam giác BDC = Tam giác CEB ( cm câu a )
=> AE = AD (2 góc tương ứng)
Mà AB - AE = AC - AD
<=> BE = CD (1)
Mặt khác góc BEI = góc CDI (2)
góc EIB = góc DIC ( đđ )
=> góc EBI = góc DCI (3)
Từ (1),(2) và (3) => Tam giác IBE = tam giác IDC( cạnh góc vuông - góc nhọn kề )
=> IB = IC ( 2 cạnh tương ứng )
=> I nằm trên đường trung trực BC (1)
Ta lại có AB = AC ( gt )
=> A nằm trên đường trung trực của BC (2)
Từ (1) và (2) => Ba điểm A , I , H là ba điểm thẳng hàng ( đpcm )
Tk nhé bạn
chị làm đây ko bt đúng hay sai đâu nha
xét tam giác ABC có BD vuông góc với AC
CE vuông góc với AB
hai đường thẳng này cát nhau tại I
suy ra I là trực tâm của tam giác ABC
suy ra AI vuông góc với BC(1)
Mặt khác, M là trung điểm của BC=> AM là đường trung tuyến của tam giác ABC
mà trong 1 tam giác cân đường trung tuyến đồng thời là đường cao
<=> AM cũng là đường cao của tam giác ABC
=> AM vuông góc với BC(2)
từ (1)(2) ta có A,I,M thẳng hàng
a) Xét 2 tg vuông AEC và ADB có: AB = AC (vì tam giác ABC cân tại A)
góc A chung
Do đó tg AEC = tg ADB (ch - gn)
=> BD = CE (đpcm)
b) xét 2 tg vuông CEB và BDC có: góc CBE = góc BCD (tam giác ABC cân tại A)
CE = BD (Cmt)
do đó tg CEB = tg BDC (cgv - gnk)
=> góc ECB = góc DBC
=> tam giác BIC cân tại I (đpcm)
c) xét 2 tg AIC và AIB có: AC = AB (tam giác ABC cân tại A)
AI chung
BI = IC (tam giác BIC cân (Cmt))
DO đó tg AIC = tg AIB (c.c.c)
=> góc IAC = góc IAB => AI là tia pg của góc BAC (Đpcm)
d) Ta có: tg CEB = tg BDC (cmt) => CD = BE mà AB = AC => AE = AD => AED cân tại A
Mà AI là tia pg của góc EAD nên AI vuông với DE(1)
Ta lại có: Tam giác ABC cân tại A mà AI là tia pg của góc BAC nên AI vuông BC (2)
Từ (1) và (2) suy ra DE // BC (cùng vuông vs BC) (đpcm)
e) ko bt
F) cm vuông như câu d nha
Xét tam giácBCE= tam giác CBD (cạnh huyền -mgóc nhọn)
góc ABC = góc ACB ( cân tại A)
BC chung
==> BD=CE
b) Tam giác BCE=tam giác CBD chứng minh ở câu a nên
góc BCE = góc DBC
--> IBC cân tại I
bạn không được nói vậy , nói thế là khinh người khác và đây là nơi chúng ta giao lưu giúp nhau mà , nên bạn không được nói bậy như thế.
(g là góc)
Xét tg ABC,có:
AB=AC
=>tg ABC cân tại A
=>gABC = gACB
a)Xét tg BEC và tg CDB ,có:
BC:chung
gBEC =gCDB =90*(vì EC vuông gAB,BD vuông gAC)
gEBC = gDCB(cmt)
=>tg BEC = tg CDB(ch-gn)
=>BD=EC
b)Theo phần a,ta có:tg BEC = tg CDB(ch-gn)
=>gDBC=gECB(2 góc tương ứng)
=>tg BIC cân tại I
=>BI=CI
mà EI+IC=EC và DI+BI=BD(vì I là gđ của BD và EC) và BD=EC(theo phần a)
=>EI = DI
c)Xét tg ABC ,có:
AB=AC(gt)
BI=CI(cmt)
BH=CH(vì H là trung điểm của BC)
=>Ba điểm A, I, H thẳng hàng
(g là góc)
Xét tg ABC,có:
AB=AC
=>tg ABC cân tại A
=>gABC = gACB
a)Xét tg BEC và tg CDB ,có:
BC:chung
gBEC =gCDB =90*(vì EC vuông gAB,BD vuông gAC)
gEBC = gDCB(cmt)
=>tg BEC = tg CDB(ch-gn)
=>BD=EC
b)Theo phần a,ta có:tg BEC = tg CDB(ch-gn)
=>gDBC=gECB(2 góc tương ứng)
=>tg BIC cân tại I
=>BI=CI
mà EI+IC=EC và DI+BI=BD(vì I là gđ của BD và EC) và BD=EC(theo phần a)
=>EI = DI
c)Xét tg ABC ,có:
AB=AC(gt)
BI=CI(cmt)
BH=CH(vì H là trung điểm của BC)
=>Ba điểm A, I, H thẳng hàng