Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAMB và ΔAMC có
AB=AC
\(\widehat{BAM}=\widehat{CAM}\)
AM chung
Do đó: ΔAMB=ΔAMC
b: Xét ΔAHM vuông tại H và ΔAKM vuông tại K có
AM chung
\(\widehat{HAM}=\widehat{KAM}\)
Do đó: ΔAHM=ΔAKM
Suy ra: AH=AK
c: Ta có: ΔAHM=ΔAKM
nên MH=MK
Ta có: AH=AK
nên A nằm trên đường trung trực của HK(1)
Ta có: MH=MK
nên M nằm trên đường trung trực của HK(2)
Từ (1) và (2) suy ra AM là đường trung trực của HK
hay AM\(\perp\)MK
a) Xét ΔAMB và ΔAMC ta có:
AB = AC (gt) (1)
góc BAM = góc CAM (gt) (2)
AM là cạnh chung (3)
Từ (1),(2),(3) ⇒ΔAMB=ΔAMC (C-G-C)
b) *Xét hai tam giác vuông AHM và AKM ta có:
AM là cạnh huyền chung (3)
góc BAM = góc CAM (gt) (2)
Vậy ΔAHM=ΔAKM (cạnh huyền-góc nhọn) (4)
* Từ (4) ⇒AH=AK⇒ (2 cạnh tương ứng)
Cậu ghi rõ ràng hơn chút được không ạ . Cậu ghi AB AC ; BE BI mình không hiểu đc
a) Ta có: \(BC^2=13^2=169\)
\(AB^2+AC^2=5^2+12^2=169\)
Do đó: \(BC^2=AB^2+AC^2\)(=169)
Xét ΔABC có \(BC^2=AB^2+AC^2\)(cmt)
nên ΔABC vuông tại A(Định lí Pytago đảo)
a/ xét tam giác ABM và tam giác ACM
có : AB = AC (gt)
góc BAM = góc CAM (vì AM là tia phân giác của góc BAC)
AM chung
do đó tam giac AMB = AMC (c-g-c)