Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔCBM và ΔADM có:
AM=MC (giả thtết)
gócCMB=gócAMD ( đối đỉnh)
BM=MD (giả thiết)
⇒ ΔCBM=ΔADM (c.g.c)
BC=DA (hai cạnh tương ứng)
b) Xét ΔABM và ΔCDM có:
AM=CM (giả thiết)
gócAMB=gócCMD(đối đỉnh)
BM=DM (giả thiết)
⇒ ΔABM=ΔCDM (c.g.c)
gócBAM=gócDCM=90độ (hai góc tương ứng) (đpcm)
⇒ DC⊥AC (đpcm)
c) Ta có BN//AC mà AC⊥DC
⇒ BN⊥DC ⇒gócBND=90độ
AB//CD (do cùng ⊥AC)
Xét ΔABC và ΔNBC có:
gócABC=gócNCB (hai góc ở vị trí so le trong)
BC chung
gócACB=gócNBC (do BN//AC nên đó là hai góc ở vị trí so le trong)
⇒ ΔABC=ΔNBC (g.c.g)
⇒ AB=NC (hai cạnh tương ứng)
Xét ΔABM và ΔCNM có:
AB=CN (cmt)
góc BAM=gócNCM=90độ
góc BAM= gócNCM=90độ
AM=CM (giả thiết)
⇒ ΔABM=ΔCNM (đpcm)
a: XétΔABM và ΔACM có
AB=AC
BM=CM
AM chung
Do đó:ΔABM=ΔACM
b: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường trung trực của BC
c: Xét ΔMCE có
CH là đường cao
CH là đường trung tuyến
Do đó: ΔMCE cân tại C
mà CA là đường cao
nên CA là tia phân giác của góc MCE
\(\text{a)Xét tam giacAIB và tam giac AIC ta có:}\)
\(\text{AB=AC(GT)}\)
\(\text{ AI là cạnh chung}\)
\(\text{ IB=IC(I là trung điểm của BC) }\)
\(\Rightarrow\Delta AIB=\Delta AIC\left(c.c.c\right)\)
Mình nghĩ khó mà có người giải hết chỗ bài tập đấy của bạn, nhiều quá
3/ (Bạn tự vẽ hình giùm)
a/ \(\Delta ABC\)và \(\Delta ADC\)có:
\(\widehat{BAC}=\widehat{ACD}\)(AB // DC; ở vị trí so le trong)
Cạnh AC chung
\(\widehat{CAD}=\widehat{ACB}\)(AB // DC; ở vị trí so le trong)
=> \(\Delta ABC\)= \(\Delta ADC\)(g. c. g)
=> AD = BC (hai cạnh tương ứng)
và AB = DC (hai cạnh tương ứng)
b/ Ta có AD = BC (cm câu a)
và \(AN=\frac{1}{2}AD\)(N là trung điểm AD)
và \(MC=\frac{1}{2}BC\)(M là trung điểm BC)
=> AN = MC
Chứng minh tương tự, ta cũng có: BM = ND
\(\Delta AMB\)và \(\Delta CND\)có:
BM = ND (cmt)
\(\widehat{ABM}=\widehat{NDC}\)(AB // CD; ở vị trí so le trong)
AB = CD (\(\Delta ABC\)= \(\Delta ADC\))
=> \(\Delta AMB\)= \(\Delta CND\)(c. g. c)
=> \(\widehat{BAM}=\widehat{NCD}\)(hai góc tương ứng)
và \(\widehat{BAC}=\widehat{ACN}\)(\(\Delta ABC\)= \(\Delta ADC\))
=> \(\widehat{BAC}-\widehat{BAM}=\widehat{ACN}-\widehat{NCD}\)
=> \(\widehat{MAC}=\widehat{ACN}\)(1)
Chứng minh tương tự, ta cũng có \(\widehat{AMC}=\widehat{ANC}\)(2)
và AN = MC (cmt) (3)
=> \(\Delta MAC=\Delta NAC\)(g, c. g)
=> AM = CN (hai cạnh tương ứng) (đpcm)
c/ \(\Delta AOB\)và \(\Delta COD\)có:
\(\widehat{BAO}=\widehat{OCD}\)(AB // DC; ở vị trí so le trong)
AB = CD (cm câu a)
\(\widehat{ABO}=\widehat{ODC}\)(AD // BC; ở vị trí so le trong)
=> \(\Delta AOB\)= \(\Delta COD\)(g. c. g)
=> OA = OC (hai cạnh tương ứng)
và OB = OD (hai cạnh tương ứng)
d/ \(\Delta ONA\)và \(\Delta MOC\)có:
\(\widehat{AON}=\widehat{MOC}\)(đối đỉnh)
OA = OC (O là trung điểm AC)
\(\widehat{OAN}=\widehat{OCM}\)(AM // NC; ở vị trí so le trong)
=> \(\Delta ONA\)= \(\Delta MOC\)(g. c. g)
=> ON = OM (hai cạnh tương ứng)
=> O là trung điểm MN
=> M, O, N thẳng hàng (đpcm)
a: Ta có: ΔABC cân tại A
mà AM là đường phân giác
nên M là trung điểm của BC