Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
https://olm.vn/hoi-dap/detail/67684739146.html
a,Xét ABM và ACM
AB=AC , AM chung , BM=MC(Do M là trung điểm của BC)
ABM = ACM
BAM = CAM (1)
Mà AM nằm giữa AB và AC ( Do M nằm giữa B và C) (2)
Từ (1) và (2)
AM là tia phân giác của BAC
b,Xét BNC và DNC
NC chung , CB = CD
Góc BCN = DCN
Tam giác:BNC = DNC
Góc BNC = DCN
Mà BNC + DCN = 180
BNC = 90
CN vuông góc với BD
a/ Xét ΔABM;ΔACMΔABM;ΔACM có :
⎧⎩⎨⎪⎪AB=ACBˆ=CˆMB=MC{AB=ACB^=C^MB=MC
⇔ΔAMB=ΔAMC(c−g−c)⇔ΔAMB=ΔAMC(c−g−c)
b/ Xét ΔBHM;ΔCKMΔBHM;ΔCKM có :
⎧⎩⎨⎪⎪⎪⎪BHMˆ=CKMˆ=900Bˆ=CˆMB=MC{BHM^=CKM^=900B^=C^MB=MC
⇔ΔBHM=ΔCKM(ch−gn)⇔ΔBHM=ΔCKM(ch−gn)
⇔BH=CK
a) Ta có AB=AC và BE=CM
=> AB - BE=AC - CM
=> AE = AM
=> tam giác AEM cân tại A
b) Xét ΔABM và ΔACE có:
+ AB=AC
+ góc A chung
+ AM = AE
=> ΔABM = ΔACE (c-g-c)
=> góc ABM = góc ACE
c) Do tam giác ABC cân tại A và AEM cân tại A
=> góc AEM = góc AME = góc ABC = góc ACB
=> EM // BC
d) Xét ΔDBC và ΔDNM có:
+ DB = DN
+ góc BDC = góc NDM (đối đỉnh)
+ DC = DM
=> ΔDBC = ΔDNM
=> góc DBC = góc DNM
=> MN // BC
=> EM trùng với MN
=> EN // BC