Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) + M là trung điểm của BC (gt)
\(\Rightarrow\)MB = MC ( tính chất) (1)
Xét tam giác ABM và tam giác ACM có: AM chung (2)
AB = AC (gt) (3)
(1)(2)(3) \(\Rightarrow\)Tam giác ABM = tam giác ACM (c-c-c)
Câu b mk thấy vô lí vì BC và AC k trùng nhau mà M là trung điểm của BC nên k thể là trung điểm của AC
Tam giác ABC cân tại A (do AB = AC)
M là trung điểm BC
=> AM là trung tuyến, phân giác, trung trực của tam giác ABC
a) Chứng minh tam giác ABM= ACM
Xét tam giác ABM và tam giác AMC, có
- AB = AC
- AM chung
- MB = MC
=> tam giác ABM= ACM (đpcm)
b) Gọi M là trung điểm của AC. Trên tia MI lấy N sao cho I là trung điểm MN. CM tam giác AIN=CIM suy ra AN//BC
Bạn viết sai đề bài thì phải, theo mình hiểu thì đề đúng phải là:
Gọi I là trung điểm của AC. Trên tia MI lấy N sao cho I là trung điểm MN. Chứng minh tam giác AIN=CIM suy ra AN//BC
Xét tam giác AIN và tam giác CIM, có
- AI = CI (I là trung điểm AC)
- IM = IN (I là trung điểm MN)
- góc I đối nhau
==> tam giác AIN = tam giác CIM (đpcm)
Xét tứ giác AMCN, có
- 2 đường chéo của tứ giác AMCN cắt nhau tại I
- I vừa là trung điểm AC, vừa là trung điểm MB
=> tứ giác AMNC là hình bình hành (định lý hình bình hành có 2 đường chéo cắt nhau tại trung điểm mỗi đường)
=> AN // MC, mà MC nằm trên BC
=> AN // BC (đpcm)
c) Chứng minh AN vuông góc với AM
Ta có:
- AM vuông góc BC (AM là phân giác, trung trực, trung tuyến của tam giác ABC), nên AM vuông góc BC
- AN // BC (chứng minh trên)
=> AN vuông góc AM (đpcm)
a) Xét ΔABCΔABC có:
AB=AC(gt)AB=AC(gt)
=> ΔABCΔABC cân tại A.
=> ˆABC=ˆACBABC^=ACB^ (tính chất tam giác cân).
Ta có:
{ˆABM+ˆABC=1800ˆACN+ˆACB=1800{ABM^+ABC^=1800ACN^+ACB^=1800 (các góc kề bù).
Mà ˆABC=ˆACB(cmt)ABC^=ACB^(cmt)
=> ˆABM=ˆACN.ABM^=ACN^.
Xét 2 ΔΔ ABMABM và ACNACN có:
AB=AC(gt)AB=AC(gt)
ˆABM=ˆACN(cmt)ABM^=ACN^(cmt)
BM=CN(gt)BM=CN(gt)
=> ΔABM=ΔACN(c−g−c)ΔABM=ΔACN(c−g−c)
=> AM=ANAM=AN (2 cạnh tương ứng).
b) Theo câu a) ta có AM=AN.AM=AN.
=> ΔAMNΔAMN cân tại A.
=> ˆM=ˆNM^=N^ (tính chất tam giác cân)
Xét 2 ΔΔ vuông BMEBME và CNFCNF có:
ˆMEB=ˆNFC=900(gt)MEB^=NFC^=900(gt)
BM=CN(gt)BM=CN(gt)
ˆM=ˆN(cmt)M^=N^(cmt)
=> ΔBME=ΔCNFΔBME=ΔCNF (cạnh huyền - góc nhọn)
( HÌNH vẽ hơi xấu )
CM
a) Xét tam giác MAI và tam giác MBC có:
\(\hept{\begin{cases}MA=MB\left(gt\right)\\\widehat{M1}=\widehat{M2}\left(2gocdoidinh\right)\\MI=MC\left(gt\right)\end{cases}\Rightarrow\Delta}MAI=\Delta MBC\left(c-g-c\right)\)
b) Xét tam giác NAK và tam giác NCB có:
\(\hept{\begin{cases}NA=NC\left(gt\right)\\\widehat{N1}=\widehat{N2}\left(2gocdoidinh\right)\\NB=NK\left(gt\right)\end{cases}}\Rightarrow\Delta NAK=\Delta NCB\left(c-g-c\right)\)
c) Vì \(\Delta MAI=\Delta MBC\left(cmt\right)\)
\(\Rightarrow\widehat{A1}=\widehat{ABC}\)( 2 góc t..ứng )
Mà 2 góc này ở vị trí so le trong
\(\Rightarrow AI//BC\left(1\right)\)
Vì \(\Delta NAK=\Delta NCB\left(cmt\right)\)
\(\Rightarrow\widehat{A2}=\widehat{ACB}\)
Mà 2 góc này ở vị trí so le trong
\(\Rightarrow AK//BC\left(2\right)\)
Từ (1) và (2) \(\Rightarrow A,I,K\)thẳng hàng ( định lý Py-ta-go )
Bạn ơi mình nhầm nhé dòng cuối cùng là theo tiên đề Ơ-clit nha xin lỗi
Bài 4:
a: Xét ΔABM và ΔACM có
AB=AC
BM=CM
AM chung
Do đó: ΔABM=ΔACM
b: Xét tứ giác AKBC có
N là trung điểm của AB
N là trung điểm của CK
Do đó: AKBC là hình bình hành
Suy ra: AK=BC
hay AK=2MC
c: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
=>AM⊥BC
mà BC//AK
nên AM⊥AK
hay \(\widehat{MAK}=90^0\)
Ta có hình vẽ:
Vì CN = 2CI nên CI = IN (đã kí hiệu trên hình)
Vì BK = 2BI nên BI = IK (đã kí hiệu trên hình)
a/ Xét tam giác AMB và tam giác AMC có:
AM: cạnh chung
AB = AC (GT)
BM = MC (GT)
=> tam giác AMB = tam giác AMC (c.c.c)
b/ Xét tam giác IMC và tam giác IAN có:
CI = IN (đã chứng minh đầu bài)
AI = IM (GT)
\(\widehat{AIN}\)=\(\widehat{MIC}\) (đối đỉnh)
=> tam giác IMC = tam giác IAN (c.g.c)
=> \(\widehat{ANI}\)=\(\widehat{ICM}\) (2 góc tương ứng)
Mà 2 góc này đang ở vị trí so le trong
=> AN//BC (đpcm)
c/ Xét tam giác IMB và tam giác IAK có:
BI = IK (đã chứng minh đầu bài)
AI = IM (GT)
\(\widehat{BIM}\)=\(\widehat{KIA}\) (đối đỉnh)
=> tam giác IMB = tam giác IAK (c.g.c)
=> \(\widehat{AKI}\)=\(\widehat{IBM}\)(2 góc tương ứng)
Mà 2 góc này đang ở vị trí so le trong
=> AK//BC
Ta có: AN // BC
AK // BC
=> AN trùng AK
hay N,A,K thẳng hàng
a: Xét ΔABM và ΔACM có
AB=AC
BM=CM
AM chung
Do đó: ΔABM=ΔACM
b: Xét tứ giác AKBC có
N là trung điểm của AB
N là trung điểm của KC
Do đó: AKBC là hình bình hành
Suy ra: AK=BC
hay AK=2xMC
a) Xét 2 tam giác ABM và ACM:
+ MB=MC
+ AB=AC
+ Cạnh AM chung
\(\Rightarrow\Delta ABM=\Delta ACM\left(c.c.c\right)\)
b) Xét 2 tam giác ANK và BNC
+ NK=NC
+ NA=NB
+ Góc ANK = góc BNC ( hai góc đối đỉnh )
\(\Rightarrow\Delta ANK=\Delta BNC\left(c.g.c\right)\)
\(\Rightarrow AK=BC\)( hai cạnh tương ứng )
Mà M là trung điểm của BC nên BC=2MC
\(\Rightarrow AK=2.MC\)
c) Ta có \(\widehat{AKN}=\widehat{BCN}\)( hai góc tương ứng của hai tam giác bằng nhau )
Mà hai góc AKN và BCN là cặp góc so le trong
\(\Rightarrow AK//BC\)
Vì hai tam giác ABM=ACM nên góc AMB= góc AMC ( hai góc tương ứng )
Mà góc AMB + AMC = 180 độ ( kề bù )\
\(\Rightarrow\widehat{AMB}=\widehat{AMC}=90^o\)
\(\Rightarrow AM\perp BC\)
Mà AK//BC
\(\Rightarrow AM\perp AK\)
Bạn ấn vào lưu hình ảnh r xem hình nhé