Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{a)}\text{Xét }\Delta ABI\text{ và }\Delta ACI\text{ có:}\)
\(AB=AC\left(gt\right)\)
\(BI=CI\text{(I trung điểm BC)}\)
\(AI\text{ chung}\)
\(\Rightarrow\Delta ABI=\Delta ACI\left(c.c.c\right)\)
\(\text{b)Xét }\Delta AIC\text{ và }\Delta DIB\text{ có:}\)
\(AI=DI\left(gt\right)\)
\(\widehat{AIC}=\widehat{DIB}\text{(đối đỉnh)}\)
\(IC=IB\)
\(\Rightarrow\Delta AIC=\Delta DIB\left(c.g.c\right)\)
\(\Rightarrow\widehat{DIB}=\widehat{ICA}\text{(2 góc tương ứng)}\)
\(\text{mà chúng so le trong}\)
\(\Rightarrow AC=BD\)
\(\text{c)Xét }\Delta IKB\text{ và }\Delta IHC\text{ có:}\)
\(\widehat{IKB}=\widehat{IHC}=90^0\)
\(IB=IC\)
\(\widehat{KIB}=\widehat{CIH}\text{(đối đỉnh)}\)
\(\Rightarrow\Delta IKB=\Delta IHC\left(ch-gn\right)\)
\(\Rightarrow IK=IH\)
\(\text{Hình có chỗ nào bạn ko thấy rõ thì ib riêng cho mik nghe:3}\)
a: Xét ΔAIB và ΔAIC có
AI chung
IB=IC
AB=AC
Do đó: ΔAIB=ΔIAC
b: Xét tứ giác ABDC có
I la trung điểm của AD
I là trung điểm của BC
Do đó: ABDC là hình bình hành
Suy ra: AB//CD
=>IK\(\perp\)CD
c: Xét tứ giác BKCH có
I là trung điểm của BC
I là trung điểm của HK
Do đó: BKCH là hình bình hành
Suy ra: BK//CH
=>CH//AB
mà CD//AB
nên C,H,D thẳng hàng
a, Xét △ABI và △ACI có :
AB = AC (gt)
BI = CI (do I là trung điểm BC)
AI chung
=> △ABI = △ACI (c-c-c)
b, Xét △AIC và △DIB có :
AI = DI (gt)
\(\widehat{AIC}=\widehat{DIB}\) (đối đỉnh)
IC = IB
=> △AIC = △DIB (c-g-c)
=> \(\widehat{DBI}=\widehat{ICA}\) (2 góc tương ứng)
mà 2 góc này ở vị trí so le trong
=> AC // BD
c, Xét △IKB và △IHC có :
\(\widehat{IKB}=\widehat{IHC}=90^O\)
IB = IC
\(\widehat{KIB}=\widehat{CIH}\) (đối đỉnh)
=> △IKB = △IHC (ch-gn)
=> IK = IH
a: Xét ΔABI và ΔCKI có
IA=IC
\(\widehat{AIB}=\widehat{CIK}\)
IB=IK
Do đó: ΔABI=ΔCKI
b: Xét tứ giác ABCK có
I là trung điểm của AC
I là trung điểm của BK
Do đó: ABCK là hình bình hành
Suy ra: KC//AB
b: Xét tứ giác ABCK có
I là trung điểm của AC
I là trung điểm của BK
Do đó: ABCK là hình bình hành
Suy ra: AB//KC
bn ơi
Mik đg hk về tam giác và chủ đề của bài tập cug là tam giác nha bn
a) Xét t/g ABI và t/g CKI có:
AI = CI (gt)
AIB = CIK ( đối đỉnh)
BI = KI (gt)
Do đó, t/g ABI = t/g CKI (c.g.c) (đpcm)
b) t/g ABI = t/g CKI (câu a) => ABI = CKI (2 góc tương ứng)
Mà ABI và CKI là 2 góc ở vị trí so le trong nên AB // KC (đpcm)
c) đề sai nhé sửa IB = IF thành ID = IF
Xét t/g DBI và t/g FKI có:
ID = IF (gt)
DIB = FIK ( đối đỉnh)
IB = IK (gt)
Do đó, t/g DBI = t/g FKI (c.g.c)
=> DBI = FKI (2 góc tương ứng)
Mà DBI và FKI là 2 góc ở vị trí so le trong nên BD // KF (đpcm)
Xét △ABI và △ACI có :
AB = AC (gt)
BI = CI (do I là trung điểm BC)
AI chung
=> △ABI = △ACI (c-c-c)
Xét △AIC và △DIB có :
AI = DI (gt)
ˆAIC=ˆDIBAIC^=DIB^ (đối đỉnh)
IC = IB
=> △AIC = △DIB (c-g-c)
=> ˆDBI=ˆICADBI^=ICA^ (2 góc tương ứng)
mà 2 góc này ở vị trí so le trong
=> AC // BD
Xét △IKB và △IHC có :
ˆIKB=ˆIHC=90OIKB^=IHC^=90O
IB = IC
ˆKIB=ˆCIHKIB^=CIH^ (đối đỉnh)
=> △IKB = △IHC (ch-gn)
=> IK = IH
Cho sp đi
Cho sp đi