Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải
a) vì m la trung diểm của BC => BM=MC
Xét tam giac BAM va tam giac MAC có:
AB=AC(dề bài cho)
BM=MC(Chung minh tren)
AM la cạnh chung(de bai cho)
=>Tam giác BAM=tam giac MAC(c.c.c)
b)từ trên
=>góc BAM=góc MAC(hai goc tuong ung)
Tia AM nam giua goc BAC (1)
goc BAM=goc MAC(2)
từ (1) va (2)
=>AM la tia phan giac cua goc BAC
c)Còn nữa ......-->
a, Xét tam gác ABH và tam giác ACH có:
AB=AC (gt)
BH=CH
AH là cạnh chung
=> tam giác ABH=ACH ( c.c.c)
=> góc BAH = CAH ( hai góc tương ứng )
Vì tam giác ABC là tam giác cân mà AH vừa là trung điểm vừa là tia phân giác thì AH cũng là đường cao của ta giác ABC => AH vuông góc vs BC
b, Xét tam giác vuông ABH và tam giác vuông KCH có :
BH=CH (gt)
HK=HA (gt)
=> tam giác vuông ABH = tam giác vuông KCH ( hai cạnh góc vuông )
=> góc HAB = góc HKC ( hai góc tương ứng )
Vì góc HAB = góc HKC nên CK//AB ( cặp góc sole trong )
4:
a: Xet ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
=>ΔAMB=ΔAMC
b: Xet ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
góc EAM=góc FAM
=>ΔAEM=ΔAFM
=>AE=AF
c: AE=AF
ME=MF
=>AM là trung trực của EF
mà K nằm trên trung trực của EF
nên A,M,K thẳng hàng
a: XétΔABH và ΔACH có
AB=AC
AH chung
HB=HC
Do đó: ΔABH=ΔACH
XétΔABH và ΔACH có
AB=AC
AH chung
HB=HC
Do đó: ΔABH=ΔACH
a) Mk nghĩ bn cheps sai đề bài rùi!!! Phải là c/m: tam giác ABD = tam giác ACD chứ!!
Xét \(\Delta ABD\)và \(\Delta ACD\)có:
AB = AC (gt)
\(\widehat{BAD}=\widehat{CAD}\)(AD là tia phân giác của \(\widehat{A}\))
AD là cạnh chung
\(\Rightarrow\Delta ABD=\Delta ACD\left(c.g.c\right)\)
b) Mk nghĩ bn lại sai đề bài!!! Làm sao c/m đc EF = AD??!!!! Đáng lẽ ra phải là EF = BD ms đúng chứ!!!!
Xét \(\Delta AEF\)và \(\Delta ADB\)có:
AE = AD (gt)
\(\widehat{EAF}=\widehat{DAB}\)(2 góc đối đỉnh)
AF = AB (gt)
\(\Rightarrow\Delta AEF=\Delta ADB\left(c.g.c\right)\)
=> EF = DB (2 cạnh tương ứng)
c) Ta có: AF = AB, mà AC = AB
=> AF = AC
Xét \(\Delta AHF\)và \(\Delta AHC\)có:
AF = AC (cmt)
AH là cạnh chung
HF = HC (H là trung điểm của FC)
\(\Rightarrow\Delta AHF=\Delta AHC\left(c.c.c\right)\)
\(\Rightarrow\widehat{FAH}=\widehat{CAH}\)(2 góc tương ứng)
=> AH là tia phân giác của \(\widehat{CAF}\)
d)
a: Xét ΔAHB và ΔAHC có
AH chung
HB=HC
AB=AC
Do đó: ΔAHB=ΔAHC
a) Xét t/g AHB & t/g AHC :
* AB = AC ( gt )
* BH = CH ( H là trung điểm )
* AH chung
=> t/g AHB = t/g AHC
b )
*Ta có :
Góc AHB = AHC ( t/g AHB = t/g AHC )
mà AHB + AHC = 180 ( kb )
=> AHB = AHC = 180 /2= 90
=> BH vuông góc BC
* Góc BAH = CAH ( t/g AHB = t/g AHC )
=> AH là p/g BAC
c)
Xét t/g AOE và t/g AOF :
* AE = AF ( gt )
* AO chung
* Góc EAO = FAO ( t/g _=_)
=> T/g AOE = t/g AOF
d) ....
Buồn buồn làm chơi ..