K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 2 2022

minh dang can gap

Bài 1: 
AC=4cm

Xét ΔABC có AB<AC

nên \(\widehat{C}< \widehat{B}\)

Bài 2: 

BC=6cm

=>AB+AC=14cm

mà AB=AC

nên AB=AC=7cm

Xét ΔABC có AB=AC>BC

nên \(\widehat{B}=\widehat{C}>\widehat{A}\)

AB<AC nên góc B>góc C

góc ADB=góc DAC+góc C

góc ADC=góc DAB+góc B

mà góc DAC=góc DAB, góc C<góc B

nên góc ADB<góc ADC

15 tháng 11 2017

ABCDE1212

Tam giác vuông CBE có \(\widehat{E}+\widehat{B_1}=90^o\) (1)

Tam giác vuông ACD có \(\widehat{D_1}+\widehat{B_2}=90^o\) (2)

Mà \(\widehat{B_1}=\widehat{B_2}\) (tính chất phân giác) và \(\widehat{D_1}=\widehat{D_2}\)(đối đỉnh) nên suy ra \(\widehat{E}=\widehat{D_2}\)

=> Tam giác CDE cân ở C

ở phầndòng thứ 2 của bạn GV phải là ACB chứ

10 tháng 2 2022

a) Ta có:

\(BC^2=AB^2+AC^2\)

\(10^2=6^2+8^2=36+64=100\)

Áp dụng định lí Pytago đảo 

⇒ Tam giác ABC vuông tại A

b) 1/ Xét tam giác ABD và tam giác EBD có

^A=^E=90o(gt)

BD: cạnh chung

^B1=^B2(BD phân giác ^B)

⇒ Tam giác ABD= tam giác EBD

2/ Em xem lại đề ha

19 tháng 8 2020

A B C D

Xét tam giác ABC có ^B = ^C => Tam giác ABC cân tại A

=> AB = AC

Xét tam giác ADB và tam giác ADC có :

^DAB = ^DAC ( AD là phân giác của ^A )

AB = AC ( tam giác ABC cân )

^B = ^C ( gt )

=> Tam giác ADB = tam giác ADC ( g.c.g )

Xong :)

19 tháng 8 2020

làm xíu hình cũng được vậy 

A B C D

Ta có góc B = góc C suy ra tam giác ABC cân tại A 

Do tam giác ABC là tam giác cân và AD là đường phân giác 

=> AD đồng thời là đường cao 

Xét hai tam giác vuông ADB và ADC ta có 

góc B = góc C ( giả thiết )

AD cạnh chung 

=> tam giác ADB = tam giác ADC ( cạnh huyền - góc nhọn )

=> góc ADB = góc ADC ( các góc tương ứng của hai tam giác bằng nhau )

Ta đã chứng minh được tam giác ADB = tam giác ADC

=> AB = AC ( các cạnh tương ứng của hai tam giác bằng nhau )

1 tháng 1 2018

ABCD12

b ) GÓC B = GÓC C

=> TAM GIÁC ABC CÂN TẠI A

=> AB = AC    (ĐPCM)

a) XÉT 2 TAM GIÁC ADB VÀ ADC, CÓ:

AB = AC (THEO CÂU B)

AD LÀ CẠNH CHUNG

GÓC A1 = GÓC A2  (AD LÀ PHÂN GIÁC, GT)

=> TAM GIÁC ADB = ADC (C.G.C)   (ĐPCM)

   
19 tháng 12 2021

a: Xét ΔADB và ΔADC có 

AB=AC

\(\widehat{BAD}=\widehat{CAD}\)

AD chung

Do đó: ΔADB=ΔADC

Xét ΔABC cso AC>AB

nên \(\widehat{B}>\widehat{C}\)

Ta có: \(\widehat{ADB}+\widehat{B}+\widehat{BAD}=\widehat{ADC}+\widehat{C}+\widehat{CAD}\)

mà \(\widehat{BAD}=\widehat{CAD}\)

và \(\widehat{B}>\widehat{C}\)

nên \(\widehat{ADB}< \widehat{ADC}\)

9 tháng 3 2022

Tam giác ABC có: AB<AC => góc C < góc B

Xét tam giác ADB và tam giác ADC có:

góc BAD = góc CAD

góc B > góc C

=> góc ADB < góc ADC

a: \(BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)

b: Xét ΔABD vuông tại A và ΔEBD vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔABD=ΔEBD

c: Xét ΔABE có BA=BE

nên ΔBAE cân tại B

mà \(\widehat{ABE}=60^0\)

nên ΔBAE đều