Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC và ΔCBD có
AB/CB=BC/BD
góc B chung
=>ΔABC đồg dạng với ΔCBD
b: ΔABC đồng dạng với ΔCBD
=>AC/CD=BC/BD=6/9=2/3
=>7/CD=2/3
=>CD=7:2/3=7*3/2=21/2(cm)
c: CF/FD=BC/BD
EA/CE=BA/BC
mà BC/BD=BA/BC
nên CF/FD=EA/CE
=>CF*CE=FD*EA
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Xét ΔABC có BD là đường phân giác ứng với cạnh AC(gt)
nên \(\dfrac{AD}{AB}=\dfrac{CD}{BC}\)(Tính chất đường phân giác của tam giác)
hay \(\dfrac{AD}{6}=\dfrac{CD}{10}\)
mà AD+CD=AC(D nằm giữa A và C)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AD}{6}=\dfrac{CD}{10}=\dfrac{AD+CD}{6+10}=\dfrac{AC}{16}=\dfrac{8}{16}=\dfrac{1}{2}\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{AD}{6}=\dfrac{1}{2}\\\dfrac{CD}{10}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AD=3\left(cm\right)\\CD=5\left(cm\right)\end{matrix}\right.\)
Vậy: BC=10cm; AD=3cm; CD=5cm
b) Ta có: \(\dfrac{CE}{CA}=\dfrac{4}{8}=\dfrac{1}{2}\)
\(\dfrac{CD}{CB}=\dfrac{5}{10}=\dfrac{1}{2}\)
Do đó: \(\dfrac{CE}{CA}=\dfrac{CD}{CB}\)
Xét ΔCED và ΔCAB có
\(\dfrac{CE}{CA}=\dfrac{CD}{CB}\)(cmt)
\(\widehat{C}\) chung
Do đó: ΔCED\(\sim\)ΔCAB(c-g-c)
a: BC=10cm
b: Xét ΔHAB vuông tại H và ΔHCA vuông tại H có
\(\widehat{HAB}=\widehat{HCA}\)
Do đó: ΔHAB∼ΔHCA
Cho tam giác ABC có AB=AC=5cm,BC= 4cm. BM,CN lần lượi là phân giác góc B và C.
a) Chứng minh MN // BC
a) Xét ΔBAC có
BM là đường phân giác ứng với cạnh AC(gt)
nên \(\dfrac{AM}{MC}=\dfrac{AB}{BC}\)(Tính chất đường phân giác của tam giác)(1)
Xét ΔBAC có
CN là đường phân giác ứng với cạnh AB(gt)
nên \(\dfrac{AN}{NB}=\dfrac{AC}{BC}\)(Tính chất đường phân giác của tam giác)(2)
Ta có: ΔABC cân tại A(gt)
nên AB=AC(Hai cạnh bên)(3)
Từ (1), (2) và (3) suy ra \(\dfrac{AN}{NB}=\dfrac{AM}{MC}\)
Xét ΔABC có
N∈AB(gt)
M∈AC(gt)
\(\dfrac{AN}{NB}=\dfrac{AM}{MC}\)(cmt)
Do đó: NM//BC(Định lí Ta lét đảo)
bn ơi nó k cho số góc thì mình giả sử số đo góc bao nhiêu cx đc hả ?
cosB = (AB^2 +BC^2-AC^2)/(2.AB.BC) = (4^2 +5^2 -6^2)/(2.4.5) = 1/8
=> ^B = 92°
cosC = (CA^2 +CB^2 - AB^2)/(2.CA.CB) = (6^2+5^2-4^2)/(2.6.5)=3/4
=> ^C = 46°
Vậy ^B = 2^C (ĐPCM)