Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c: Xét tứ giác AEDF có
\(\widehat{AED}=\widehat{AFD}=\widehat{FAE}=90^0\)
Do đó: AEDF là hình chữ nhật
mà AD là tia phân giác
nên AEDF là hình vuông
Nên tứ giác AFDE là hình vuông
* Vì DE ⊥ AB, AC ⊥ AB nên DE // AC
Theo định lí Ta-lét ta có: CD/BC = AE/AB
a, Aps dụng địnhlí Py-ta-go:
BC^2=AB^2+AC^2=6^2 + 8^2 =100
->BC=10(cm)
b, AD là phân giác góc A:=>BD/CD=AB/AC
=>BD/CD=6/8=3/4
=>BD/3=CD/4
mÀ bD+CD=10->BD/3=CD/4=(BD+CD)/7=10/7
=>bd=10/7*3=30/7(cm)
=>CD=10/7*4=40/7(cm)
c, Ta thấy:
DE vuông góc với AB
DF vg góc với AC =>> Tứ giác AEDF là hình chữ nhật mà AD là p/giac góc A=>Tứ giác AEDF là hình vuông
Góc A: vuông
Ta có: S(ABC)=S(ADB)+S(ADC)
<=>1/2AB*AC=1/2ED*AB+1/2FD*AC
Vì:DE=DF(AEDF là hình vuông)=>DE=DF=(AB*AC)/(AB+AC)=49/14=24/7(cm)
=>S(AEDF)=DE^2=11,8(cm2)
=>C(AEDF)=4DE=4*24/7=13,71(CM
c: Xét tứ giác AEDF có
\(\widehat{AED}=\widehat{AFD}=\widehat{FAE}=90^0\)
Do đó: AEDF là hình chữ nhật
mà AD là tia phân giác
nên AEDF là hình vuông
a) tam giác ABC vuông tại A => AB2 + AC2 = BC2 ( định lý py-ta-go)
hay 92 + 122 = BC2
=> BC2 = 81 + 144 = 225 => BC = √225=15cm225=15cm
trong tam giác ABC có: AB < AC < BC
=> góc C < góc B < góc A (định lý)
XÉT tam giác ABC vuông tại A : BC2=AB2+AC2=36+64+100
=>BC=10.
b) áp dụng tích chất đường pg trong tam giác vào tam giác abc ta có :
AB/AC=BD/DC <=> 6/8=BD/DC<=>BD/6=DC/8=K .
=> 6K=DC ; 8K=BD .
CÓ BD+DC =BC=10
<=>6K+8K=10
<=>14K=10
<=>K=5/7 .
=>DB=5/7 . 8 = 40/7 ;DC=5/7 . 6 =30/7 .
C) TG AEDF LÀ HCN VÌ : GÓC DÈ = GÓC EAF = GÓC AFD=90'.
CHU VI VÀ DIỆN TÍCH THÌ TÍNH CẠNH EA VÀ ED THÌ RA.
c) Xét tứ giác AEDF có:
∠(EAF) = ∠(AFD) = ∠(AED) = 90 0
⇒ Tứ giác AEDF là hình chữ nhật
Lại có: ΔAFD vuông tại F, có ∠(FAD) = 45 0
⇒ ΔAFD vuông cân tại F
⇒ AF = FD
⇒ tứ giác AEDF là hình vuông
Xét tam giác DEB vuông tại D có:
Chu vi hình vuông AEDF là:
Diện tích hình vuông AEDF là: