Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
, Tự vẽ hình và ghi giả thiết kết luận (mình không biết vẽ hình trên máy -_-")
Giải : Từ giả thiết ta có
D là trung điểm của AB và MO
,E là trung điểm của AC và ON
=> ED là đường trung bình của cả hai tam giác ABC và OMN
Áp dụng định lý đường trung bình vào tam giác trên ,ta được
\(\hept{\begin{cases}AD//BC,DE//MN\\DE=\frac{1}{2}BC,DE=\frac{1}{2}MN\end{cases}}\Rightarrow\hept{\begin{cases}MN//BC\\MN=BC\end{cases}}\)
Tứ giác MNCB có hai cạnh đối song song và bằng nhau nên nó là hình bình hành
Từ từ ,hình như mình làm nhầm đề :) Để mình làm lại đã rồi trả lời bn sau nhé!!!!!@@
Qua D vẽ đường thẳng song song với AC cắt AB ở K
Ta có AD là đường phân giác trong của \(\Delta ABC\)
\(\Rightarrow\frac{AC}{AB}=\frac{CD}{DB}\)(theo tính chất đường phân giác trong tam giác)
CE là đường phân giác trong của \(\Delta ABC\)nên \(\frac{AC}{BC}=\frac{EA}{EB}\)(theo tính chất đường phân giác trong tam giác)
Mà AB > BC (gt) nên \(\frac{AC}{AB}< \frac{AC}{BC}\Rightarrow\frac{DC}{DB}< \frac{EA}{EB}\)(1)
\(\Delta ABC\)có \(DK//AC\)nên \(\frac{DC}{DB}=\frac{KA}{KB}\)(2)
Từ (1) và (2) suy ra \(\frac{KA}{KB}< \frac{EA}{EB}\)
\(\Rightarrow\frac{KA}{KB}+1< \frac{EA}{EB}+1\Rightarrow\frac{AB}{KB}< \frac{AB}{EB}\Rightarrow KB>EB\)
Do đó K không trùng E. Do vậy DE cắt AC, gọi M là giao điểm của DE và AC
Ta có \(\widehat{ADE}>\widehat{DAM}\)(\(\widehat{ADE}\)là góc ngoài của \(\Delta DAM\))
Mà \(\widehat{DAM}=\widehat{DAE}\)(gt) \(\Rightarrow\widehat{ADE}>\widehat{DAE}\)
\(\Rightarrow AE>DE\)(quan hệ giữa góc và cạnh đối diện trong tam giác) (3)
Mặt khác \(\widehat{DCE}=\widehat{ECA}\left(gt\right)\)mà \(\widehat{ECA}>\widehat{CED}\)(\(\widehat{ECA}\)là góc ngoài của \(\Delta CEM\))
Do đó \(\widehat{DCE}>\widehat{CED}\Rightarrow DE>DC\)(quan hệ giữa góc và cạnh đối diện trong tam giác) (4)
Từ (3) và (4) suy ra AE > DE > DC (đpcm)
a: BC=5cm
b: Xét ΔHBA vuông tại H và ΔHAC vuông tại H có
\(\widehat{HBA}=\widehat{HAC}\)
Do đó: ΔHBA∼ΔHAC
c: Ta có: ΔHBA∼ΔHAC
nên HB/HA=HA/HC
hay \(HA^2=HB\cdot HC\)
a)vì AD là tia phân giác của góc A
=>\(\dfrac{DB}{DC}=\dfrac{AB}{AC}=\dfrac{4}{5}\)
<=>\(\dfrac{BD}{DC}=\dfrac{4}{5}< =>\dfrac{BD}{4}=\dfrac{DC}{5}\)
mà BD+DC=BC=6
áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\dfrac{BD}{4}=\dfrac{DC}{5}=\dfrac{DC+BD}{4+5}=\dfrac{6}{12}=\dfrac{1}{2}\)
=>BD=2cm
=>DC=4cm