K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 11 2017

Tam giác ABC cân tại A nên ABC = ACB =\(90-\frac{BAC}{2}=90-\frac{70}{2}=90-35=55\)độ

BM, CM lần lượt là phân giác của góc B, góc C nên CBM = BCM =\(\frac{1}{2}ABC\left(=\frac{1}{2}ACB\right)\)\(\frac{55}{2}\)độ 

Tam giác BCM có: BCM + CBM + BMC = 180 độ \(\Rightarrow\)\(2\times\frac{55}{2}\)+ BMC = 180 độ

Góc BMC = 180 -55= 125 độ

14 tháng 3 2018

a) Xét tam giác ABC có 
(góc) A+B+C=180o(định lí tổng 3 góc của 1 tam giác)
hay  60o+ABC+ACB=180o
    (góc)   ABC+ACB=180o-60o=120o
Ta có BD là tia phân giác của góc ABC,CE là tia phân giác của góc ACB
=> (góc) DBC+DCB=ABC + ACB /2=120o-60o=60o

Xét tam giác DBC có
(góc)         BDC+ DBC+DCB=180o(Định lí tổng 3 góc của một tam giác)
hay (góc)  BDC+60o=180o
        (góc) BDC          =180o-60o=120o
:3

câu b đâu òi

27 tháng 9 2021

Ta có \(\widehat{A}+\widehat{ABC}+\widehat{C}=180^0\Rightarrow180^0-3\widehat{C}+\widehat{C}=180^0-70^0=110^0\)

\(\Rightarrow2\widehat{C}=70^0\Rightarrow\widehat{C}=35^0\Rightarrow\widehat{A}=180^0-3\cdot35^0=75^0\)

Ta có BE là p/g nên \(\widehat{B_1}=\widehat{B_2}=\dfrac{1}{2}\widehat{ABC}=35^0\)

Mà \(ED//BC\) nên \(\widehat{B_2}=\widehat{E_2}=35^0\left(so.le.trong\right)\left(1\right)\)

Ta có \(ED//BC\Rightarrow\widehat{E_1}=\widehat{C}=35^0\left(đồng.vị\right)\left(2\right)\)

\(\left(1\right)\left(2\right)\Rightarrow\widehat{E_1}=\widehat{E_2}\left(=35^0\right)\)

Vậy ...

 

10 tháng 7 2017

a) xét tam giác ABD và tam giác ACD có

AB=AC,AD là cạnh chung góc BAD= góc DAC

vậy tam giác ABD=tam giác ACD(C.g.c)

Suy ra gócADB=gócADC=1/2BDC=1/2*180=90

Hay AD vuông góc với BC

4 tháng 1 2020

E D A C B F I

a) Xét \(\Delta\)BAE và \(\Delta\)DAC có: ^BAE = ^DAC ( đối đỉnh ) ; AD = AB ( gt ) ; AE = AC ( gt )

=> \(\Delta\)BAE = \(\Delta\)DAC ( c.g.c)

=> BE = DC 

b) Tương tự câu a dễ dàng cm đc: \(\Delta\)ADE = \(\Delta\)ABC => ^ADE = ^ABC => DE//BC

=> ^EDI = ^DIC  mà ^EDI = ^BDI  ( DI là phân giác ^BDE ) 

=> ^DIC = ^BDI hay ^DIB = ^IDB => \(\Delta\)BDI cân tại B.

c) Ta có: ^DBC là góc ngoài tại đỉnh B của \(\Delta\)BDI => ^DBC = ^BDI + ^BID  = 2. ^BID  = 2. ^CIF( theo b) (1)

Có: CF là phân giác ^BCA =>^BCF = ^ACF => ^BCA = ^BCF + ^ACF = 2. ^BCF = 2. ^ICF  (2)

Lại có: ^CFD  là góc ngoài của \(\Delta\)FCI  => ^CFD = ^CIF + ^ICF  (3)

Từ (1) ; (2) ; (3) => 2 .^CFD = 2 ^CIF + 2. ^ICF = ^DBC + ^BCA = ^DBC + ^CED  (  ^CED = ^BCA  vì ED //BC )

24 tháng 2 2022

098765432rtyuiorewerio65yuy5t

yyyyyyyyyyyyyyyyyyyyyyy

8 tháng 11 2018