Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔABD vuông tại A và ΔHBD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)(BD là tia phân giác của \(\widehat{ABH}\))
Do đó: ΔABD=ΔHBD(cạnh huyền-góc nhọn)
Suy ra: BA=BH(hai cạnh tương ứng)
Ta có:
\(AB=AC\)
\(\Rightarrow\Delta ABC\)là tam giác cân
\(\Rightarrow\widehat{ABC}=\widehat{ACB}\)
Do \(\widehat{ACB}\)và \(\widehat{KCE}\)là 2 góc đối đỉnh
\(\Rightarrow\widehat{ACB}=\widehat{KCE}\)
Xét \(\Delta BDH\)(vuông) và \(\Delta CEK\)(vuông) có:
\(BD=CE\)
\(\widehat{DBH}=\widehat{ECK}\left(=\widehat{ACB}\right)\)
\(\Rightarrow\Delta BDH=\Delta CEK\left(ch.gn\right)\)
\(\Rightarrow HD=EK\)
Ta có:
\(\widehat{DIH}=\widehat{KIE}\)(đối đỉnh)
\(\widehat{DHI}=\widehat{EKI}\)(=90O)
\(\Rightarrow\widehat{HDI}=\widehat{KEI}\)
Xét \(\Delta DHI\)và \(\Delta EKI\)có:
\(\widehat{DHI}=\widehat{EKI}\)
\(HD=EK\)
\(\widehat{HDI}=\widehat{KEI}\)
\(\Rightarrow\Delta DHI=\Delta EKI\left(g.c.g\right)\)
\(\Rightarrow DI=IE\)
Do \(\hept{\begin{cases}DI< DE\\DI=IE\end{cases}}\)
Vậy I là trung điểm DE
a)Xét ΔADB và ΔADE có:
AB=AE(gt)
\(\widehat{BAD}=\widehat{EAD}\left(gt\right)\)
AD:cạnh chung
=> ΔADB=ΔADE(c.g.c)
b)Vì: ΔADB=ΔADE(cmt)
=> \(\widehat{ABD}=\widehat{AED};BD=DE\)
Xét ΔDBH và ΔDEK có:
\(\widehat{BHD}=\widehat{EKD}=90^o\left(gt\right)\)
BD=DE(cmt)
\(\widehat{HBD}=\widehat{KED}\left(cmt\right)\)
=>ΔDBH=ΔDEK(cạnh huyền-góc nhọn)
=>BH=EK
Ta có hình vẽ sau:
a/ Xét ΔADB và ΔADE có:
AD: Cạnh chung
\(\widehat{BAD}=\widehat{EAD}\) (gt)
AB = AE (gt)
=> ΔADB = ΔADE (c.g.c) (đpcm)
b/ Vì ΔADB = ΔADE (ý a) => \(\widehat{ABD}=\widehat{AED}\) (2 góc tương ứng)
và DB = DE (2 cạnh tương ứng)
Xét 2Δ vuông: ΔDBH và ΔDEK có:
DB = DE (cmt)
\(\widehat{ABD}=\widehat{AED}\) (cmt)
=> ΔDBH = ΔDEK (cạnh huyền - góc nhọn)
=> BH = EK(2 cạnh tương ứng)(đpcm)
a: Xét ΔABC vuông tại A và ΔADE vuông tại A có
AB=AD
AC=AE
Do đó: ΔABC=ΔADE
Suy ra: BC=DE
Bài 5: Cho tam giác ABC vuông tại A có AB < AC. Trên cạnh AC lấy điểm D sao cho AD = AB. Trên tia đối của tia AB lấy điểm E sao cho AE = AC. Chứng minh rằng: a) DE = BC b) DE vuông góc với BC
a: Xét ΔMAB và ΔMEC có
MA=ME
góc AMB=góc EMC
MB=MC
=>ΔMAB=ΔMEC
b: ΔMAB=ΔMEC
=>góc MAB=góc MEC
=>AB//CE
c: Xét ΔMHA vuông tại H và ΔMKE vuông tại K có
MA=ME
góc HAM=góc KEA
=>ΔMHA=ΔMKE
=>MH=MK
=>M là trung điểm của HK
mấy bạn phải giải cho mình trước để mình xem đúng hay ko thì mình mới tick được chứ mình ko thể tick đúng lung tung được