Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác ABD và tam giác AED có:
AB=AE (GT)
góc BAD = góc EAD (AD là tia phân giác)
AD chung
Suy ra tam giác ABD=tam giác AED(CGC)
Suy ra BD=BE (hai cạnh tương ứng)
Xét tam giác AFD và tam giác ACD có:
AF=AC(GT)
Góc FAD= góc CAD (AD là tia phân giác của góc A)
AD chung
suy ra tam giác AFD và tam giác ACD(CGC)
suy ra DF=DC(2 cạnh tương ứng)
vì AB+BF=AE+EC (AF=AC)
Mà AB=AE(GT)
Suy ra BF=EC
Xet tam giác BFD và tam giác ECD có:
DB=DE(CMT)
DF=DC(CMT)
BF=EC(CMT)
Suy ra tam giac BFD=tamgiác ECD (CCC)
b) BF=EC (CMT)
c) vì tam giác BFD=tam giác ECD (CMT)
Suy ra gócBDF= gócEDC(2 GÓC TƯƠNG ỨNG)
Mà 2 góc này ở vị trí đối đỉnh
suy ra 3 điểm F,D,E thẳng hàng
d) xét tam giác AFD có:
AF=EC(GT)
Suy ra tam giác AFC cân tại A
mà AD là tia phân giac của góc A(gt)
suy ra AD cũng là đường cao của tam giác FAC
hay AD vuông góc FC
a+b) Xét \(\Delta AFE\) và \(\Delta ACB:\)
Ta có:\(A\) là góc chung
AE=AB (gt)
AF=AC (gt)
Vậy \(\Delta AFE=\Delta ACB\)(c.g.c)
Vậy \(AFE=ACB\) góc tương ứng 1
Xét \(\Delta ABD\) và \(\Delta AED\)
Ta có : \(BAD=EAD\) ( gt )
AD là cạnh chung
AB=AE (cạnh tương ứng)
Vậy \(\Delta ABD=\Delta AED\) ( c.g.c)
Vậy BD=ED (cạnh tương ứng ) (2)
Xét \(\Delta BDF\) và \(\Delta EDC\)
Ta có: EC=BF ( Do EA=BA và AC=AF mà EC=AC-EA, BF=AF-AB )
Từ (1)(2)
Vậy \(\Delta BDF=\Delta EDC\) ( c.g.c)
c. Ta có: \(BDF=EDC\) ( góc đối, cm câu a)
Nên F, D, E thẳng hàng
d. AC=AF (cạnh tương ứng, cm trên)
Nên AD là đường phân giác đồng thời đường cao ứng \(\Delta ACF\) cân nên AD vuông góc FC
a)Xét tam giác ABD và tam giác AED có:
AB=AE(gt)
góc BAD=góc EAD(do AD là tia phân giác của góc BAC)
AD là cạnh chung
Do đó: tam giác BAD= tam giác EAD(c.g.c)
=> BD=DE( 2 cạnh T.Ư)
Xét tam giác FAD và tam giác CAD có:
FA=CA(gt)
góc BAD=góc EAD(do AD là tia phân giác của góc BAC)
AD là cạnh chung
Do đó tam giác FAD= tam giác CAD(c.g.c)
=> FD=CD( 2 cạnh T.Ư)
Xét tam giác BDF và tam giác EDC có:
BD=DE(CMT)
góc BDF=góc EDC( vì đối đỉnh)
FD=CD( 2 cạnh T.Ư)
Do đó tam giác BDF= tam giác EDC(c.g.c)
Gửi trước câu a
Lời giải:
a) Ta có:
\(\left\{\begin{matrix} AB=AE\\ AF=AC\end{matrix}\right.\Rightarrow AF-AB=AC-AE\)
\(\Leftrightarrow BF=CE\) (1)
Xét tam giác $ADF$ và $ADC$ có:
\(\left\{\begin{matrix} AD -\text{chung}\\ \angle FAD=\angle CAD(\text{do AD là phân giác})\\ AF=AC\end{matrix}\right.\)
\(\Rightarrow \triangle ADF=\triangle ADC(c.g.c)\Rightarrow DF=DC\) (2)
Tương tự, ta cm đc \(\triangle ABD=\triangle AED(c.g.c)\Rightarrow BD=ED\) (3)
Từ \((1);(2);(3)\Rightarrow \triangle BDF=\triangle EDC\) (c.c.c)
b) Đã chứng minh ở phần a
c) Vì \(\triangle BDF=\triangle EDC(cmt)\Rightarrow \angle BDF=\angle EDC\)
\(\Rightarrow \angle BDF+\angle BDE=\angle EDC+\angle BDE\)
\(\Leftrightarrow \angle FDE=\angle BDC=180^0\Rightarrow F,D,E\) thẳng hàng
d)
Do $AF=AC$ nên tam giác $FAC$ cân tại $A$. Do đó đường phân giác $AD$ đồng thời cũng là đường cao ứng với cạnh đáy $FC$ (tính chất của tam giác cân)
\(\Rightarrow AD\perp FC\) (đpcm)