Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc BDH=1/2*sđ cung BH=90 độ
=>HD vuông góc AB
góc HEC=1/2*sđ cung HC=90 độ
=>HE vuông góc AC
góc ADH+góc AEH=180 độ
=>ADHE nội tiếp
b: Xét ΔIDH và ΔIHE có
góc IHD=góc IEH
góc I chung
=>ΔIDH đồng dạng với ΔIHE
=>ID/IH=IH/IE
=>IH^2=ID*IE
a: góc BEC=1/2*180=90 độ
=>CE vuông góc AB
góc BFC=1/2*180=90 độ
=>BF vuông góc AC
góc BEC=góc BFC=90 độ
=>BEFC nội tiếp
góc AEH+góc AFH=180 độ
=>AEHF nội tiếp
b: Xét ΔAEC vuông tại E và ΔAFB vuông tại F có
góc A chung
=>ΔAEC đồng dạng với ΔAFB
=>AE/AF=AC/AB
=>AE*AB=AF*AC
c: góc BHC=góc BOC
góc BHC+góc BAC=180 độ
=>góc BOC+góc BAC=180 độ
=>góc BAC=60 độ
=>góc KOC=60 độ
=>OK/OC=1/2
a) Vì ADHE nội tiếp \(\Rightarrow\angle AED=\angle AHD=90-\angle BHD=\angle DBH\)
\(\Rightarrow BDEC\) nội tiếp
b) Xét \(\Delta SCE\) và \(\Delta SDB:\) Ta có: \(\left\{{}\begin{matrix}\angle SCE=\angle SDB\\\angle DSBchung\end{matrix}\right.\)
\(\Rightarrow\Delta SCE\sim\Delta SDB\left(g-g\right)\Rightarrow\dfrac{SE}{SC}=\dfrac{SB}{SD}\Rightarrow SE.SD=SB.SC\left(1\right)\)
Ta có: \(\left\{{}\begin{matrix}SH\bot HO\\H\in\left(O\right)\end{matrix}\right.\Rightarrow\) SH là tiếp tuyến của (O)
Xét \(\Delta SHE\) và \(\Delta SDH:\) Ta có: \(\left\{{}\begin{matrix}\angle SHE=\angle SDH\\\angle DSHchung\end{matrix}\right.\)
\(\Rightarrow\Delta SHE\sim\Delta SDH\Rightarrow\dfrac{SH}{SE}=\dfrac{SD}{SH}\Rightarrow SE.SD=SH^2\left(2\right)\)
Từ (1) và (2) \(\Rightarrow SH^2=SB.SC\)