K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 5 2021

a) Vì ADHE nội tiếp \(\Rightarrow\angle AED=\angle AHD=90-\angle BHD=\angle DBH\)

\(\Rightarrow BDEC\) nội tiếp

b) Xét \(\Delta SCE\) và \(\Delta SDB:\) Ta có: \(\left\{{}\begin{matrix}\angle SCE=\angle SDB\\\angle DSBchung\end{matrix}\right.\)

\(\Rightarrow\Delta SCE\sim\Delta SDB\left(g-g\right)\Rightarrow\dfrac{SE}{SC}=\dfrac{SB}{SD}\Rightarrow SE.SD=SB.SC\left(1\right)\)

Ta có: \(\left\{{}\begin{matrix}SH\bot HO\\H\in\left(O\right)\end{matrix}\right.\Rightarrow\) SH là tiếp tuyến của (O) 

Xét \(\Delta SHE\) và \(\Delta SDH:\) Ta có: \(\left\{{}\begin{matrix}\angle SHE=\angle SDH\\\angle DSHchung\end{matrix}\right.\)

\(\Rightarrow\Delta SHE\sim\Delta SDH\Rightarrow\dfrac{SH}{SE}=\dfrac{SD}{SH}\Rightarrow SE.SD=SH^2\left(2\right)\)

Từ (1) và (2) \(\Rightarrow SH^2=SB.SC\)

a: góc BDH=1/2*sđ cung BH=90 độ

=>HD vuông góc AB

góc HEC=1/2*sđ cung HC=90 độ

=>HE vuông góc AC

góc ADH+góc AEH=180 độ

=>ADHE nội tiếp

b: Xét ΔIDH và ΔIHE có

góc IHD=góc IEH

góc I chung

=>ΔIDH đồng dạng với ΔIHE

=>ID/IH=IH/IE

=>IH^2=ID*IE

a: góc BEC=1/2*180=90 độ

=>CE vuông góc AB

góc BFC=1/2*180=90 độ

=>BF vuông góc AC

góc BEC=góc BFC=90 độ

=>BEFC nội tiếp

góc AEH+góc AFH=180 độ

=>AEHF nội tiếp

b: Xét ΔAEC vuông tại E và ΔAFB vuông tại F có

góc A chung

=>ΔAEC đồng dạng với ΔAFB

=>AE/AF=AC/AB

=>AE*AB=AF*AC

c: góc BHC=góc BOC

góc BHC+góc BAC=180 độ

=>góc BOC+góc BAC=180 độ

=>góc BAC=60 độ

=>góc KOC=60 độ

=>OK/OC=1/2