K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xet ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

b: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

HB=6^2/10=3,6cm

 

a: XetΔICA vuông tạiC và ΔIHB vuông tại H có

góc AIC=góc BIH

=>ΔICA đồng dạng với ΔIHB

b: \(CB=\sqrt{25^2-15^2}=20\left(cm\right)\)

AI là phân giác

=>CI/AC=IB/AB

=>CI/3=IB/5=(CI+IB)/(3+5)=20/8=2,5

=>CI=7,5cm; IB=12,5cm

 

6 tháng 2 2022

a) Xét tam giác AIC và tam giác BIH có:

\(\widehat{AIC}=\widehat{BIH}\)(đối đỉnh)

\(\widehat{ACI}=\widehat{BHI}=90^0\)

\(\Rightarrow\Delta AIC\sim\Delta BIH\left(g.g\right)\)

Câu b em xem lại đề nhé ! Sao AC=15cm và AC=25cm được nhỉ ?

a: \(BC=\sqrt{8^2+6^2}=10\left(cm\right)\)

b: Sửa đề: vuônggóc BC, cắt AC tại H

Xet ΔCDH vuông tại D và ΔCAB vuông tại A có

góc C chung

=>ΔCDH đồng dạng với ΔCAB

c: BD/DC=AB/AC=4/3

a: Xét ΔBHI vuông tại H và ΔAKI vuông tại K có

góc BIH=góc AIK

=>ΔBHI đồng dạng vói ΔAKI

=>IB*IK=IA*IH

b: góc BHA=góc BKA=90 độ

=>BHKA nội tiếp

=>góc BAH=góc BKH

12 tháng 5 2023

BHKA nội tiếp là gì vậy bạn mình chưa hiểu lắm

10 tháng 8 2019

A B C I N M J P Q R K

Gọi AJ là đường trung tuyến của \(\Delta\)ABC. Đường thẳng qua N song song AB cắt BC tại P.

Đường thẳng qua C song song AB cắt đường thẳng qua M song song BC và AJ lần lượt tại Q,R.

Ta thấy \(\Delta\)MAN có đường cao AI đồng thời là đường phân giác nên \(\Delta\)MAN cân tại A

=> I cũng là trung điểm cạnh MN. Từ đó \(\Delta\)MBI = \(\Delta\)NPI (g.c.g) => NP = BM; ^INP = ^IMB

Mà NP // BM // CQ, BM = CQ nên NP // QC, NP = QC => Tứ giác NPQC là hình bình hành

Nếu ta gọi K là trung điểm PC thì N,K,Q thẳng hàng

Chú ý rằng \(\Delta\)NPC ~ \(\Delta\)ABC (g.g) với trung tuyến tương ứng NK,AJ => \(\Delta\)NPK ~ \(\Delta\)ABJ (c.g.c)

=> ^PNQ = ^PNK = ^BAJ. Kết hợp với ^INP = ^IMB (cmt) suy ra ^MNQ = ^INP + ^PNQ = ^BAJ + ^IMB (1)

Mặt khác: \(\Delta\)ABJ = \(\Delta\)RCJ (g.c.g) => AB = CR < AC => ^BAJ = ^CRJ > CAJ

Điều đó có nghĩa là ^BAJ > ^BAC/2 = ^BAI => ^BAJ + ^IMB > ^BAI + ^IMB = 900  (2)

Từ (1) và (2) suy ra ^MNQ > 900 => MQ là cạnh lớn nhất trong \(\Delta\)QMN => MN < MQ = BC

Vậy MN < BC.