Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có :
\(15^2=225\)
\(9^2=81\)
\(12^2=144\)
Vì \(15^2=225\) (1)
\(9^2+12^2=81+144=225\) (2)
( Bình phương cạnh lớn nhất bằng tổng bình phương 2 cạnh còn lại)
Từ(1) và (2)
\(\Rightarrow\Delta ABC\)vuông
b) Xét \(\Delta MHC\)và \(\Delta MKB\)Có :
\(MH=MK\left(GT\right)\) (1)
\(\widehat{HMC}=\widehat{KMB}\)( đối đỉnh ) (2)
\(MC=MB\left(GT\right)\) (3)
Từ (1) ;(2) và (3)
\(\Rightarrow\Delta MHB=\Delta MKB\)( Cạnh - góc - cạnh)
c) --Vì \(MB=MC\)(GT) (1)
-- Áp dụng tính chất đường cao hạ từ trung điểm của cạnh huyền tam giác vuông ta có :
\(HA=HC\) (2)
Từ (1) và (2)
=> G là trọng tâm của tam giác ABC (đpcm )
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow AC^2=BC^2-AB^2=15^2-9^2=144\)
hay AC=12(cm)
Vậy: AC=12cm
A) XÉT \(\Delta ABC\)VUÔNG TẠI
CÓ AM LÀ TRUNG TUYẾN \(\Rightarrow AM=\frac{1}{2}BC\Leftrightarrow AM=BM=CM\)
XÉT TAM GIÁC AMC CÓ AM=CM => TAM GIÁC AMC CÂN TẠI M
MÀ TRONG TAM GIÁC CÂN ĐƯỜNG CAO CŨNG LÀ TIA PHÂN GIÁC => MH LÀ PHÂN GIÁC CỦA \(\widehat{AMC}\)
\(\Rightarrow\widehat{AMH}=\widehat{HMC}\)
XÉT \(\Delta AMH\)VÀ \(\Delta CMH\)CÓ
\(AM=MC\left(CMT\right)\)
\(\widehat{AMH}=\widehat{HMC}\left(CMT\right)\)
MH LÀ CẠNH CHUNG
=>\(\Delta AMH\)=\(\Delta CMH\)(C-G-C)
=> AH= CH ( HAI CẠNH TƯƠNG ỨNG)
=> BH LÀ ĐƯỜNG TRUNG TUYẾN CỦA TAM GIÁC ABC
VÌ HAI TĐƯỜNG TRUNG TUYẾN AM VÀ BH CẮT NHAU TẠI G
=> G LÀ TRỌNG TÂM CỦA TAM GIÁC ABC
B)
XÉT \(\Delta ABC\)VUÔNG TẠI A
CÓ AM LÀ TRUNG TUYẾN
\(\Rightarrow AM=\frac{1}{2}BC\left(Đ/L\right)\)P/S CHỈ ÁP DỤNG TRAM GIÁC GIÁC VUÔNG
c) Tính chất đường trung tuyến ứng với cạnh huyền của tam giác vuông, bạn lên mạng tham khảo , EZ
a) AM = MC nên tam giác AMC cân tại M nên MH là đường cao cũng là trung tuyến hay H là trung điểm của AC nên BH là trung tuyến của tam giác ABC
Mà AM cũng là trung tuyến của tam giác ABC nên G trọng tâm của tam giác ABC